Rock / Mine Classification Using Supervised Machine Learning Algorithms

K, Sivachandra. and R, Kumudham. and Kumar, P Sathish and V, Rajendran. and Lakshmi, G.R.Jothi (2023) Rock / Mine Classification Using Supervised Machine Learning Algorithms. In: 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India.

[thumbnail of Rock _ Mine Classification Using Supervised Machine Learning Algorithms _ IEEE Conference Publication _ IEEE Xplore.pdf] Archive
Rock _ Mine Classification Using Supervised Machine Learning Algorithms _ IEEE Conference Publication _ IEEE Xplore.pdf

Download (427kB)

Abstract

Nowadays, Artificial Intelligence appears in the domain of goetechnics, underwater acoustics, tunneling, geomorphology engineering and also in several fields too. This paper focused on the prospectivefor machine learning approaches which are sub field of artificial intelligence especially in underwater acoustics domain. In this proposal, machine learning approaches such as light gradient boosting, logistic regression, and random forest classifier algorithms are used for categorizing rocks or mines from collected sonar dataset. Based on performance metrics such as precision, F-score, recall, execution time, accuracy and confusion matrix, evaluate overall performance of machine learning models. Here, the experimental results shows that among all classifier algorithms, light gradient boosting achieves greater validation accuracy as 95% also training accuracy as 100* moreover, random forest classifier achieves 100% accuracy during training phase.

Item Type: Conference or Workshop Item (Paper)
Subjects: Electronics and Communication Engineering > Computer Network
Divisions: Electronics and Communication Engineering
Depositing User: Mr IR Admin
Date Deposited: 24 Sep 2024 10:34
Last Modified: 24 Sep 2024 10:34
URI: https://ir.vistas.ac.in/id/eprint/7089

Actions (login required)

View Item
View Item