ABIRATERONE ACETATE LOADED SODIUM ALGINATE NANOPARTICLES FOR IMPROVING AQUEOUS SOLUBILITY AND DISSOLUTION OF ABIRATERONE ACETATE: PREPARATION AND FORMULATION OPTIMIZATION BY CENTRAL COMPOSITE DESIGN, CHARACTERIZATION

M., NALLAMUTHU and S., UMADEVI (2025) ABIRATERONE ACETATE LOADED SODIUM ALGINATE NANOPARTICLES FOR IMPROVING AQUEOUS SOLUBILITY AND DISSOLUTION OF ABIRATERONE ACETATE: PREPARATION AND FORMULATION OPTIMIZATION BY CENTRAL COMPOSITE DESIGN, CHARACTERIZATION. International Journal of Applied Pharmaceutics. pp. 268-278. ISSN 0975-7058

[thumbnail of ABIRATERONE_ACETATE_LOADED_SODIUM_ALGINA.pdf] Text
ABIRATERONE_ACETATE_LOADED_SODIUM_ALGINA.pdf

Download (878kB)

Abstract

ABIRATERONE ACETATE LOADED SODIUM ALGINATE NANOPARTICLES FOR IMPROVING AQUEOUS SOLUBILITY AND DISSOLUTION OF ABIRATERONE ACETATE: PREPARATION AND FORMULATION OPTIMIZATION BY CENTRAL COMPOSITE DESIGN, CHARACTERIZATION NALLAMUTHU M. https://orcid.org/0009-0002-5003-720X UMADEVI S.

Objective: Abiraterone acetate is poorly soluble in water and is not effectively absorbed from the gastrointestinal tract. The oral bioavailability of abiraterone acetate in humans is predicted to be less than 10% due to these characteristics. The target of the present work was to construct Abiraterone Acetate Loaded Sodium Alginate Nanoparticles (ASNPs) to improve the abiraterone acetate aqueous solubility and dissolution. Methods: The ASNPs were constructed by using the solvent desolvation method. For ASNPs optimization, the Central Composite Design (CCD) was selected. Particle size and Drug Entrapment Efficiency (DEE) were employed as responses to optimize the independent variable composition using CCD. Results: According to CCD, 13 formulations were developed. The particle size of 219.5±0.92 nm and DEE of 89.21±0.54% originated from the optimal batch based on the desirability function (0.978). Optimized ASNPs were found with a zeta potential of-46.9±0.65 mV, and in vitro drug release of 95.43±0.87%. Optimized ASNPs demonstrated a 28.4-fold increase in the solubility in water compared to pure abiraterone acetate. The in vitro drug release evaluation suggests that optimized ASNPs exhibit improved dissolution and sustained drug release compared to the commercial product. Conclusion: This study concludes that optimized ASNPs overcome the aqueous solubility and dissolution challenges of abiraterone acetate and possess most of the ideal properties required for an oral sustained-release dosage form. This can reduce the dosage, administration time, and systemic toxicity, and improve oral bioavailability compared to the commercial product.
07 07 2025 268 278 https://creativecommons.org/licenses/by/4.0 10.22159/ijap.2025v17i4.53942 https://journals.innovareacademics.in/index.php/ijap/article/view/53942 https://journals.innovareacademics.in/index.php/ijap/article/download/53942/32275 https://journals.innovareacademics.in/index.php/ijap/article/download/53942/32275 https://journals.innovareacademics.in/index.php/ijap/article/download/53942/32332 10.1016/j.ijpharm.2011.08.032 Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1-10. doi: 10.1016/j.ijpharm.2011.08.032, PMID 21884771. 10.1023/A:1016212804288 Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20. doi: 10.1023/a:1016212804288, PMID 7617530. 10.1016/j.ejps.2006.04.016 Pouton CW. Formulation of poorly water soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3-4):278-87. doi: 10.1016/j.ejps.2006.04.016, PMID 16815001. 10.1038/s41573-020-0090-8 Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-24. doi: 10.1038/s41573-020-0090-8, PMID 33277608. Amsa P, Tamizharasi S, Jagadeeswaran M, Sivakumar T. Preparation and solid state characterization of simvastatin nanosuspensions for enhanced solubility and dissolution. Int J Pharm Pharm Sci. 2014;6(10):265-9. 10.22159/ijap.2024v16i6.51843 Hanum TI, Prasetyo BE, Fadilla W. Formulation and in vitro test of ketoprofen nanosuspension using the milling method with polymer variations. Int J App Pharm. 2024;16(6):57-63. doi: 10.22159/ijap.2024v16i6.51843. Hemant KS, Raizaday A, Sivadasu P, Uniyal S, Kumar SH. Cancer nanotechnology: nanoparticulate drug delivery for the treatment of cancer. Int J Pharm Pharm Sci. 2015;3:40-6. 10.1016/j.jsps.2017.10.012 Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70. doi: 10.1016/j.jsps.2017.10.012, PMID 29379334. 10.1016/j.addr.2011.12.009 Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557-70. doi: 10.1016/j.addr.2011.12.009, PMID 22212900. 10.1517/17425247.2015.1018175 Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459-73. doi: 10.1517/17425247.2015.1018175, PMID 25813361. 10.3390/pr9010137 Ahmad A, Mubarak NM, Jannat FT, Ashfaq T, Santulli C, Rizwan M. A critical review on the synthesis of natural sodium alginate based composite materials: an innovative biological polymer for biomedical delivery applications. Processes. 2021;9(1):137. doi: 10.3390/pr9010137. 10.1016/j.xphs.2021.12.024 Jadach B, Swietlik W, Froelich A. Sodium alginate as a pharmaceutical excipient: novel applications of a well known polymer. J Pharm Sci. 2022;111(5):1250-61. doi: 10.1016/j.xphs.2021.12.024, PMID 34986359. 10.1016/j.carbon.2015.07.066 Cui Z, Zhang Y, Zhang J, Kong H, Tang X, Pan L. Sodium alginate functionalized nanodiamonds as sustained chemotherapeutic drug release vectors. Carbon. 2016;97:78-86. doi: 10.1016/j.carbon.2015.07.066. 10.1038/s41416-020-0859-x Butler EN, Kelly SP, Coupland VH, Rosenberg PS, Cook MB. Fatal prostate cancer incidence trends in the United States and England by race stage and treatment. Br J Cancer. 2020;123(3):487-94. doi: 10.1038/s41416-020-0859-x, PMID 32433602. 10.1056/NEJMoa1704174 Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez Antolin A, Alekseev BY. Abiraterone plus prednisone in metastatic castration sensitive prostate cancer. N Engl J Med. 2017;377(4):352-60. doi: 10.1056/NEJMoa1704174, PMID 28578607. 10.1016/j.ejpb.2015.01.001 Stappaerts J, Geboers S, Snoeys J, Brouwers J, Tack J, Annaert P. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro rat in situ and human in vivo studies. Eur J Pharm Biopharm. 2015;90:1-7. doi: 10.1016/j.ejpb.2015.01.001, PMID 25592324. US FDA. Clinical pharmacology and biopharmaceutics review(s)-Zytiga®; 2010. Available from: https://www.fda.accessdata.gov/drugsatfdadocs/nda/2011/202379orig1s000clinpharmr.pdf. [Last accessed on 10 Apr 2024]. 10.1016/j.ijpharm.2020.119069 Schultz HB, Meola TR, Thomas N, Prestidge CA. Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. Int J Pharm. 2020;577:119069. doi: 10.1016/j.ijpharm.2020.119069, PMID 31981706. 10.2147/DDDT.S447496 Liu Y, Liang Y, Yuhong J, Xin P, Han JL, DU Y. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des Dev Ther. 2024 May 1;18:1469-95. doi: 10.2147/DDDT.S447496, PMID 38707615. 10.1016/j.jconrel.2023.05.001 Rampado R, Peer D. Design of experiments in the optimization of nanoparticle based drug delivery systems. J Control Release. 2023;358:398-419. doi: 10.1016/j.jconrel.2023.05.001, PMID 37164240. 10.1016/j.ejpb.2021.05.011 Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura DE, Carvalho Vicentini F, Lopes Badra Bentley MV. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm. 2021 Aug;165:127-48. doi: 10.1016/j.ejpb.2021.05.011, PMID 33992754. 10.3390/separations11100290 Akbel E. Development validation and greenness assessment of eco-friendly analytical methods for the determination of abiraterone acetate in pure form and pharmaceutical formulations. Separations. 2024;11(10):290. doi: 10.3390/separations11100290. 10.1016/S0378-5173(99)00370-1 Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. 2000 Jan 20;194(1):91-102. doi: 10.1016/s0378-5173(99)00370-1, PMID 10601688. Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull. 2015;5(1):57-67. doi: 10.5681/apb.2015.008, PMID 25789220. 10.1016/j.nano.2005.12.003 Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8-21. doi: 10.1016/j.nano.2005.12.003, PMID 17292111. 10.1002/jps.22545 Martin Moe S, Lim FJ, Wong RL, Sreedhara A, Sundaram J, Sane SU. A new roadmap for biopharmaceutical drug product development: integrating development validation and quality by design. J Pharm Sci. 2011;100(8):3031-43. doi: 10.1002/jps.22545, PMID 21425164. 10.3390/pharmaceutics12121132 Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P. Solid lipid nanoparticles as formulative strategy to increase oral permeation of a molecule active in multidrug resistant tuberculosis management. Pharmaceutics. 2020;12(12):1132. doi: 10.3390/pharmaceutics12121132, PMID 33255304. 10.1007/s11095-019-2620-9 Ismail R, Sovany T, Gacsi A, Ambrus R, Katona G, Imre N. Synthesis and statistical optimization of poly (lactic-Co-glycolic acid) nanoparticles encapsulating GLP1 analog designed for oral delivery. Pharm Res. 2019;36(7):99. doi: 10.1007/s11095-019-2620-9, PMID 31087188. 10.4103/1735-5362.199041 Salatin S, Barar J, Barzegar Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1-14. doi: 10.4103/1735-5362.199041, PMID 28255308. 10.1002/jps.20818 Bai G, Armenante PM, Plank RV, Gentzler M, Ford K, Harmon P. Hydrodynamic investigation of USP dissolution test apparatus II. J Pharm Sci. 2007;96(9):2327-49. doi: 10.1002/jps.20818, PMID 17573698. 10.2217/nnm.09.75 Muthu MS, Feng SS. Pharmaceutical stability aspects of nanomedicines. Nanomedicine (Lond). 2009;4(8):857-60. doi: 10.2217/nnm.09.75, PMID 19958220. 10.3390/molecules29204854 Zhuo Y, Zhao YG, Zhang Y. Enhancing drug solubility bioavailability and targeted therapeutic applications through magnetic nanoparticles. Molecules. 2024;29(20):4854. doi: 10.3390/molecules29204854, PMID 39459222. 10.3390/jpm11060571 Subhan MA, Yalamarty SS, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med. 2021;11(6):571. doi: 10.3390/jpm11060571, PMID 34207137. 10.1016/j.yexmp.2008.12.004 Singh R, Lillard JW JR. Nanoparticle based targeted drug delivery. Exp Mol Pathol. 2009 Jun;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176. 10.1517/17425247.2011.553216 Kita K, Dittrich C. Drug delivery vehicles with improved encapsulation efficiency: taking advantage of specific drug carrier interactions. Expert Opin Drug Deliv. 2011;8(3):329-42. doi: 10.1517/17425247.2011.553216, PMID 21323506. 10.1017/S0885715618000015 Wheatley AM, Kaduk JA, Gindhart AM, Blanton TN. Crystal structure of abiraterone acetate (Zytiga) C26 H33 NO2. Powder Diffr. 2018;33(1):72. doi: 10.1017/S0885715618000015. 10.1016/j.addr.2007.05.011 Blagden N, DE Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617-30. doi: 10.1016/j.addr.2007.05.011, PMID 17597252. 10.1016/j.jconrel.2017.06.003 Al Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017;260:202-12. doi: 10.1016/j.jconrel.2017.06.003, PMID 28603030. 10.1016/j.carbpol.2015.10.070 Borba PA, Pinotti M, DE Campos CE, Pezzini BR, Stulzer HK. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs. Carbohydr Polym. 2016 Feb 10;137:350-9. doi: 10.1016/j.carbpol.2015.10.070, PMID 26686139. 10.1016/j.carbpol.2015.07.072 Chang SH, Lin HT, WU GJ, Tsai GJ. pH Effects on solubility zeta potential and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym. 2015;134:74-81. doi: 10.1016/j.carbpol.2015.07.072, PMID 26428102.

Item Type: Article
Subjects: Pharmaceutics > Pharmacokinetics
Domains: Pharmaceutics
Depositing User: Mr IR Admin
Date Deposited: 13 Aug 2025 05:33
Last Modified: 13 Aug 2025 05:33
URI: https://ir.vistas.ac.in/id/eprint/9932

Actions (login required)

View Item
View Item