Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing

Sukhavasi, Vidyullatha and Kulkarni, Shridhar and V., Raghavendran and C., Dastagiraiah and Apat, Shraban Kumar and Reddy, Pundru Chandra Shaker (2025) Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing. Recent Advances in Computer Science and Communications, 18 (4). ISSN 26662558

Full text not available from this repository. (Request a copy)

Abstract

Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing Vidyullatha Sukhavasi Shridhar Kulkarni Raghavendran V. Dastagiraiah C. Shraban Kumar Apat Pundru Chandra Shaker Reddy Aims & Background:

Due to its ferocity, enormous metastatic potential, and variability, cancer is responsible for a disproportionately high number of deaths. Cancers of the lung and colon are two of the most common forms of the disease in both sexes worldwide. The excellence of treatment and the endurance rate for cancer patients can be greatly improved with early and precise diagnosis.
Objectives & Methodology:

We suggest a computationally efficient and highly accurate strategy for the rapid and precise diagnosis of lung and colon cancers as a substitute for the standard approaches now in use. The training and validation procedures in this work made use of an enormous dataset consisting of lung and colon histopathology pictures. There are 25,000 Histopathological Images (HIs) in the dataset, split evenly among 5 categories (mostly lung and colon tissues). Before training it on the dataset, a pretrained neural network (AlexNet) had its four layers fine-tuned.
Results:

The study enhances malignancy detection in lung and colon histopathology images by applying transfer learning with class-selective image processing. Instead of enhancing the entire dataset, a targeted contrast enrichment was applied to images from the underperforming class, improving the model's accuracy from 92.3% to 99.2% while reducing computational overhead.
Conclusion:

This approach stands out by emphasizing class-specific enhancements, leading to significant performance gains. The results meet or exceed established CAD metrics for breast cancer histological images, demonstrating the method's efficiency and effectiveness.
04 2025 e26662558335817 LiveAll1 1 10.2174/BSP_crossmark_policy eurekaselect.com true Peer Reviewed Single blind Checked with iThenticate 2024-07-15 2024-08-28 2024-09-13 2025-02-28 10.2174/0126662558335817241014113154 https://www.eurekaselect.com/235642/article https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/article/download?doi=10.2174/0126662558335817241014113154 https://www.eurekaselect.com/235642/article IEEE Access Mehmood S. 10 25657 2022 10.1109/ACCESS.2022.3150924 Mehmood S.; Ghazal T.M.; Khan M.A.; Zubair M.; Naseem M.T.; Faiz T.; Ahmad M.; Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing. IEEE Access 2022,10,25657-25668 Int J Comput Digital Sys Oubaalla A. 15 583 2024 10.12785/ijcds/160144 Oubaalla A.; ElMoubtahij H.; El Akkad N.; Detection of Lung and Colon Cancer from Histopathological Images: Using Convolutional Networks and Transfer Learning. Int J Comput Digital Sys 2024,15(1),583-595 Opt Quantum Electron Suneel S. 56 559 2024 10.1007/s11082-023-06245-y Suneel S.; Balaram A.; Amina Begum M.; Umapathy K.; Reddy P.C.S.; Talasila V.; Quantum mesh neural network model in precise image diagnosing. Opt Quantum Electron 2024,56(4),559 Heliyon Uddin A.H. 10 e30625 2024 10.1016/j.heliyon.2024.e30625 Uddin A.H.; Chen Y.L.; Akter M.R.; Ku C.S.; Yang J.; Por L.Y.; Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures. Heliyon 2024,10(9),e30625 Eurasian J Med Karabulut İ. 56 35 2024 10.5152/eurasianjmed.2024.23130 Karabulut İ.; Selen R.; Yağanoğlu M.; Özmen S.; Recognition of Colon Polyps (Tubular Adenoma, Villous Adenoma) and Normal Colon Epithelium Histomorphology with Transfer Learning. Eurasian J Med 2024,56(1),35-41 J Inf Technol Manage Sudhakar B. 16 44 2024 Sudhakar B.; Sikrant P.A.; Prasad M.L.; Latha S.B.; Kumar G.R.; Sarika S.; Shaker Reddy P.C.; Brain Tumor Image Prediction from MR Images Using CNN Based Deep Learning Networks. J Inf Technol Manage 2024,16(1),44-60 J Electrical Systems Rao V. 20 1218 2024 10.52783/jes.2851 Rao V.; Modernizing Cancer Diagnosis with an Intelligent Model for Lung and Colon Cancer. J Electrical Systems 2024,20(6s),1218-1226 Mob Netw Appl Alabdulqader E.A. 1 2024 10.1007/s11036-024-02331-x Alabdulqader E.A.; Umer M.; Alnowaiser K.; Wang H.; Alarfaj A.A.; Ashraf I.; Image Processing-based Resource-Efficient Transfer Learning Approach for Cancer Detection Employing Local Binary Pattern Features. Mob Netw Appl 2024,1-17 J Inf Technol Manage Prasad M.L. 16 118 2024 Prasad M.L.; Kiran A.; Shaker Reddy P.C.; Chronic Kidney Disease Risk Prediction Using Machine Learning Techniques. J Inf Technol Manage 2024,16(1),118-134 Diagnostics (Basel) Tummala S. 13 1594 2023 10.3390/diagnostics13091594 Tummala S.; Kadry S.; Nadeem A.; Rauf H.T.; Gul N.; An explainable classification method based on complex scaling in histopathology images for lung and colon cancer. Diagnostics (Basel) 2023,13(9),1594 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) Sowjanya S. 2024 10.1109/ICKECS61492.2024.10617376 Sowjanya S.; Reddy I.S.; Muralikrishna C.; Prasad T.S.L.; Reddy P.C.S.; Sharma V.; Bioacoustics Signal Authentication for E-Medical Records Using Blockchain. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) 18-19 Apr, 2024, Chikkaballapur, India, 2024, pp. 1-6.2024 Biomimetics (Basel) Iqbal S. 8 370 2023 10.3390/biomimetics8040370 Iqbal S.; Qureshi A.N.; Alhussein M.; Aurangzeb K.; Kadry S.; A Novel Heteromorphous Convolutional Neural Network for Automated Assessment of Tumors in Colon and Lung Histopathology Images. Biomimetics (Basel) 2023,8(4),370 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC) Shaik M.K. 10.1109/ICECCC61767.2024.10593884 Shaik M.K.; Kalpana D.; Sesadri U.; Mukherjee S.; Dastagiraiah C.; Reddy P.C.S.; Brain Tumor Classification Using UNet Deep Neural Networks from 3D MRI Images. 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC) 02-03 May 2024, Bengaluru, India, 2024, pp. 1-6. Med Biol Eng Comput Chhillar I. 62 913 2023 10.1007/s11517-023-02984-y Chhillar I.; Singh A.; A feature engineering-based machine learning technique to detect and classify lung and colon cancer from histopathological images. Med Biol Eng Comput 2023,62(3),913-924 Sensors (Basel) Rahman A. 22 3833 2022 10.3390/s22103833 Rahman A.; Alqahtani A.; Aldhafferi N.; Nasir M.U.; Khan M.F.; Khan M.A.; Mosavi A.; Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors (Basel) 2022,22(10),3833 Sci Rep Maleki D. 14 9724 2024 10.1038/s41598-024-60256-7 Maleki D.; Rahnamayan S.; Tizhoosh H.R.; A self-supervised framework for cross-modal search in histopathology archives using scale harmonization. Sci Rep 2024,14(1),9724 Wirel Commun Mob Comput Singhal A. 2022 1 2022 10.1155/2022/1671829 Singhal A.; Varshney S.; Mohanaprakash T.A.; Jayavadivel R.; Deepti K.; Reddy P.C.S.; Mulat M.B.; Minimization of latency using multitask scheduling in industrial autonomous systems. Wirel Commun Mob Comput 2022,2022(1),1-10 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) Syal J.S. 10.23919/INDIACom61295.2024.10498812 Syal J.S.; Jain A.; Dubey A.K.; Jain V.; Improving Lung and Colon Cancer Detection using Ensemble Method Approach. 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) 28 Feb - 01 Mar, 2024, New Delhi, India, 2024, pp. 1767-1773. Intell Based Med Dabass M. 7 100094 2023 10.1016/j.ibmed.2023.100094 Dabass M.; Dabass J.; Vashisth S.; Vig R.; A hybrid U-Net model with attention and advanced convolutional learning modules for simultaneous gland segmentation and cancer grade prediction in colorectal histopathological images. Intell Based Med 2023,7,100094 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) Gadupudi A. 10.1109/ICICACS60521.2024.10498711 Gadupudi A.; Prasad M.L.; Nadgaundi S.K.; Reddy P.C.S.; Sharma S.; Sharma N.; A deep learning framework for human disease prediction using microbiome data. 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) 23-24 Feb, 2024, Raichur, India, 2024, pp. 1-6. Comput Methods Programs Biomed Kumar A. 251 108207 2024 10.1016/j.cmpb.2024.108207 Kumar A.; Vishwakarma A.; Bajaj V.; ML3CNet: Non-local means-assisted automatic framework for lung cancer subtypes classification using histopathological images. Comput Methods Programs Biomed 2024,251,108207 IEEE Access Noaman N.F. 12 64396 2024 10.1109/ACCESS.2024.3397040 Noaman N.F.; Kanber B.M.; Smadi A.A.; Jiao L.; Alsmadi M.K.; Advancing Oncology Diagnostics: AI-Enabled Early Detection of Lung Cancer Through Hybrid Histological Image Analysis. IEEE Access 2024,12,64396-64415 Comput Biol Med Salvi M. 128 104129 2021 10.1016/j.compbiomed.2020.104129 Salvi M.; Acharya U.R.; Molinari F.; Meiburger K.M.; The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Comput Biol Med 2021,128,104129 IEEE Access Khan T.A. 11 39418 2023 10.1109/ACCESS.2023.3266156 Khan T.A.; Fatima A.; Shahzad T.; Atta-Ur-Rahman ; Alissa K.; Ghazal T.M.; Al-Sakhnini M.M.; Abbas S.; Khan M.A.; Ahmed A.; Secure IoMT for disease prediction empowered with transfer learning in healthcare 5.0, the concept and case study. IEEE Access 2023,11,39418-39430 IEEE Trans Med Imaging Greenspan H. 35 1153 2016 10.1109/TMI.2016.2553401 Greenspan H.; van Ginneken B.; Summers R.M.; Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016,35(5),1153-1159 arXiv:170406825 Razzak M.I. 2018 Razzak M.I.; Naz S.; Zaib A.; Deep learning for medical image processing: Overview, challenges and the future. arXiv:170406825 2018 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC) Nangunuri A. 10.1109/ICECCC61767.2024.10593843 Nangunuri A.; Somnathe A.T.; Prasanthi B.; Mercy E.L.; Ramanan S.V.; Reddy P.C.S.; A Novel Meta-Learning Ensemble Framework for Cancer Classification Using Convolution Neural Networks. 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC) 02-03 May, 2024, Bengaluru, India, 2024, pp. 1-6. Med Image Anal Srinidhi C.L. 67 101813 2021 10.1016/j.media.2020.101813 Srinidhi C.L.; Ciga O.; Martel A.L.; Deep neural network models for computational histopathology: A survey. Med Image Anal 2021,67,101813 Comput Biol Med Dabass M. 147 105680 2022 10.1016/j.compbiomed.2022.105680 Dabass M.; Vashisth S.; Vig R.; A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images. Comput Biol Med 2022,147,105680 Commun Math Biol Neurosci Izzaty A.M.K. 2022 67 2022 Izzaty A.M.K.; Cenggoro T.W.; Elwirehardja G.N.; Pardamean B.; Multiclass classification of histology on colorectal cancer using deep learning. Commun Math Biol Neurosci 2022,2022,67 J Healthc Eng Hasan M.I. 2022 1 2022 10.1155/2022/5269913 Hasan M.I.; Ali M.S.; Rahman M.H.; Islam M.K.; Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks. J Healthc Eng 2022,2022,1-12 Deep Learners and Deep Learner Descriptors for Medical Applications Kather J.N. 2020 Kather J.N.; Bello-Cerezo R.; Di Maria F.; van Pelt G.W.; Mesker W.E.; Halama N.; Bianconi F.; Classification of tissue regions in histopathological images: Comparison between pre-trained convolutional neural networks and local binary patterns variants. Deep Learners and Deep Learner Descriptors for Medical Applications 2020 Cancers (Basel) Liu Y. 14 5181 2022 10.3390/cancers14215181 Liu Y.; Wang H.; Song K.; Sun M.; Shao Y.; Xue S.; Li L.; Li Y.; Cai H.; Jiao Y.; Sun N.; Liu M.; Zhang T.; CroReLU: Cross-Crossing Space-Based Visual Activation Function for Lung Cancer Pathology Image Recognition. Cancers (Basel) 2022,14(21),5181 Int J Imaging Syst Technol Ali S. 31 94 2021 10.1002/ima.22462 Ali S.; Hassan M.; Saleem M.; Tahir S.F.; Deep transfer learning based hepatitis B virus diagnosis using spectroscopic images. Int J Imaging Syst Technol 2021,31(1),94-105 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) Li X. 10.1109/CISP-BMEI.2017.8301998 Li X.; Pang T.; Xiong B.; Liu W.; Liang P.; Wang T.; Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) 14-16 Oct, 2017, Shanghai, China, 2017, pp. 1-11. Artif Intell Med DiPalma J. 119 102136 2021 10.1016/j.artmed.2021.102136 DiPalma J.; Suriawinata A.A.; Tafe L.J.; Torresani L.; Hassanpour S.; Resolution-based distillation for efficient histology image classification. Artif Intell Med 2021,119,102136 Front Med (Lausanne) Dimitriou N. 6 264 2019 10.3389/fmed.2019.00264 Dimitriou N.; Arandjelović O.; Caie P.D.; Deep learning for whole slide image analysis: an overview. Front Med (Lausanne) 2019,6,264 Cancer Napel S. 124 4633 2018 10.1002/cncr.31630 Napel S.; Mu W.; Jardim-Perassi B.V.; Aerts H.J.W.L.; Gillies R.J.; Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 2018,124(24),4633-4649 Proc IEEE Jia X. 108 178 2020 10.1109/JPROC.2019.2950506 Jia X.; Xing X.; Yuan Y.; Xing L.; Meng M.Q.H.; Wireless capsule endoscopy: A new tool for cancer screening in the colon with deep-learning-based polyp recognition. Proc IEEE 2020,108(1),178-197 medRxiv Singha Deo B. 2022 Singha Deo B.; Pal M.; Panigrahi P.K.; Pradhan A.; An ensemble deep learning model with empirical wavelet transform feature for oral cancer histopathological image classification. medRxiv 2022 MedRxiv Bukhari S.U.K. 2020 10.1101/2020.08.15.20175760 Bukhari S.U.K.; Syed A.; Bokhari S.K.A.; Hussain S.S.; Armaghan S.U.; Shah S.S.H.; The histological diagnosis of colonic adenocarcinoma by applying partial self supervised learning. MedRxiv 2020 Mangal S. 2020 Mangal S.; Chaurasia A.; Khajanchi A.; Convolution neural networks for diagnosing colon and lung cancer histopathological images. 2020 Wirel Commun Mob Comput Masud M. 2020 1 2020 10.1155/2020/8893494 Masud M.; Muhammad G.; Hossain M.S.; Alhumyani H.; Alshamrani S.S.; Cheikhrouhou O.; Ibrahim S.; Light deep model for pulmonary nodule detection from CT scan images for mobile devices. Wirel Commun Mob Comput 2020,2020,1-8

Item Type: Article
Subjects: Electronics and Communication Engineering > Fiber-Optic Communication
Domains: Computer Science
Depositing User: Mr IR Admin
Date Deposited: 11 Aug 2025 05:36
Last Modified: 11 Aug 2025 05:36
URI: https://ir.vistas.ac.in/id/eprint/9900

Actions (login required)

View Item
View Item