Review in green synthesis mechanisms, application, and future prospects for Garcinia mangostana L. (mangosteen)-derived nanoparticles

Chan, Yu Bin and Aminuzzaman, Mohammod and Chuah, Xinn-Tze and Li, Kefeng and Balu, Prakash and Wong, Ling Shing and Guha, Samar Kumar and Tey, Lai-Hock (2025) Review in green synthesis mechanisms, application, and future prospects for Garcinia mangostana L. (mangosteen)-derived nanoparticles. Nanotechnology Reviews, 14 (1). ISSN 2191-9097

[thumbnail of 10.1515_ntrev-2025-0157.pdf] Text
10.1515_ntrev-2025-0157.pdf

Download (4MB)

Abstract

Review in green synthesis mechanisms, application, and future prospects for Garcinia mangostana L. (mangosteen)-derived nanoparticles Yu Bin Chan Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus , Kampar , 31900, Perak , Malaysia Mohammod Aminuzzaman Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus , Kampar , 31900, Perak , Malaysia Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology , Dhaka , Bangladesh Centre for Advanced and Sustainable Materials Research (CASMR), Universiti Tunku Abdul Rahman (UTAR) , Sungai Long , 43000, Selangor , Malaysia Xinn-Tze Chuah Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus , Kampar , 31900, Perak , Malaysia Kefeng Li Faculty of Applied Sciences, Macau Polytechnic University, R. de Luís Gonzaga Gomes , 999078 , Macao , China Prakash Balu Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Velan Nagar, P.V. Vaithiyalingam Road, Pallavaram , Chennai , 600 117, Tamil Nadu , India Ling Shing Wong Faculty of Health and Life Sciences, INTI International University , Nilai , 71800, Negeri Sembilan , Malaysia School of Nursing, Shinawatra University, 99 Moo 10, Bangtoey , Samkhok , Pathum Thani, 12160 , Thailand Samar Kumar Guha Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology, 141-142, Love Road, Tejgaon I/A , Dhaka , 1208 , Bangladesh Lai-Hock Tey Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus , Kampar , 31900, Perak , Malaysia Abstract

The growing global demand for sustainable and cost-effective methods of nanomaterial production has driven the development of green synthesis techniques, offering a safer alternative to traditional, hazardous approaches. Among the numerous plants utilized for this purpose, Garcinia mangostana L. (mangosteen) stands out due to its high content of bioactive phytochemicals, such as α-mangostin, xanthones, and other secondary metabolites. These compounds serve as natural reducing, capping, and stabilizing agents in the synthesis of metal and metal oxide nanoparticles (NPs) such as silver, gold, and zinc oxide. In contrast to traditional approaches reliant on toxic chemicals and harsh circumstances, mangosteen extracts facilitate the production of NPs in moderate and sustainable conditions, offering a viable strategy for sustainable nanotechnology. This review article offers a thorough examination of the green synthesis processes utilizing extracts from mangosteen, going over the physicochemical characteristics of the resultant NPs and their numerous uses, such as antimicrobial and anticancer properties, antioxidant therapy, and environmental remediation. It is highlighted that NPs synthesized from mangosteen have the potential to solve environmental and health issues. However, to enable wider industrial and commercial applications, important issues including scalability, repeatability of NP properties, and long-term stability need to be addressed. In addition to providing insights into the creation of sustainable NPs, this study critically evaluates existing research and lays the groundwork for future developments in green nanotechnology.
04 28 2025 04 28 2025 01 01 2025 20250157 10.1515/ntrev-2025-0157 http://creativecommons.org/licenses/by/4.0 10.1515/ntrev-2025-0157 https://www.degruyterbrill.com/document/doi/10.1515/ntrev-2025-0157/html https://www.degruyterbrill.com/document/doi/10.1515/ntrev-2025-0157/pdf https://www.degruyterbrill.com/document/doi/10.1515/ntrev-2025-0157/xml 10.1016/j.rinp.2020.103013 Balakrishnan G, Velavan R, Mujasam Batoo K, Raslan EH. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 2020;16:103013–6. 10.1016/j.rinp.2020.103013. 10.1016/j.jphotobiol.2018.10.022 Hoseinpour V, Ghaemi N. Green synthesis of manganese nanoparticles: Applications and future perspective – a review. J Photochem Photobiol B Biol. 2018;189:234–43. 10.1016/j.jphotobiol.2018.10.022. 10.5772/intechopen.83499 Vladimirovna Zaitseva N, Alexandrovna Zemlyanova M. Toxicologic characteristics of nanodisperse manganese oxide: Physical-chemical properties, biological accumulation, and morphological-functional properties at various exposure types. In: Nduka JK, Rashed MN, editors. Heavy Metal Toxicity in Public Health. London, United Kingdom: InTechOpen; 2020. 10.5755/j02.ms.28314 Abbes N, Bekri I, Cheng M, Sejri N, Cheikrouhou M, Xu J. Green synthesis and characterization of zinc oxide nanoparticles using mulberry fruit and their antioxidant activity. Mater Sci. 2021;28:144–50. 10.5755/j02.ms.28314. 10.1186/s43141-021-00119-0 Ammulu MA, Vinay VK, Giduturi AK, Vemuri PK, Mangamuri U, Poda S. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium Roxb. heartwood extract and its biomedical applications. J Genet Eng Biotechnol. 2021;19:21–38. 10.1186/s43141-021-00119-0. 10.3390/jof7050372 Hassan SE-D, Fouda A, Saied E, Farag MMS, Eid AM, Barghoth MG, et al. Rhizopus oryzae-mediated green synthesis of magnesium oxide nanoparticles (MgO-NPs): A promising tool for antimicrobial, mosquitocidal action, and tanning effluent treatment. J Fungi. 2021;7:372–96. 10.3390/jof7050372. 10.1021/acsomega.1c01512 Sajjad A, Bhatti SH, Ali Z, Jaffari GH, Khan NA, Rizvi ZF, et al. Photoinduced fabrication of zinc oxide nanoparticles: Transformation of morphological and biological response on light irradiance. ACS Omega. 2021;6:11783–93. 10.1021/acsomega.1c01512. 10.3390/molecules25214896 Sana SS, Kumbhakar DV, Pasha A, Pawar SC, Grace AN, Singh RP, et al. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: assessment of antimicrobial and anticancer activity. Molecules. 2020;25:4896–916. 10.3390/molecules25214896. 10.1007/s12034-020-02247-8 Dawadi S, Gupta A, Khatri M, Budhathoki B, Lamichhane G, Parajuli N. Manganese dioxide nanoparticles: Synthesis, application and challenges. Bull Mater Sci. 2020;43:277–86. 10.1007/s12034-020-02247-8. 10.12688/f1000research.25238.1 Fredericks J, Senapati S, Wannemuehler MJ. Cytotoxic effects of manganese oxide nanoparticles in combination with microbial components on intestinal epithelial cells. F1000Research. 2020;9:975–89. 10.12688/f1000research.25238.1. 10.1088/1361-6528/abb626 Greene A, Hashemi J, Kang Y. Development of MnO2 hollow nanoparticles for potential drug delivery applications. Nanotechnology. 2020;32:025713–27. 10.1088/1361-6528/abb626. 10.3390/biom10050785 Khan SA, Shahid S, Shahid B, Fatima U, Abbasi SA. Green synthesis of MnO nanoparticles using Abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities. Biomolecules. 2020;10:785–803. 10.3390/biom10050785. 10.3390/molecules26103029 Rajendran NK, George BP, Houreld NN, Abrahamse H. Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules. 2021;26:3029–39. 10.3390/molecules26103029. 10.3390/nano11051084 Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and biological activity of nanoparticles of manganese and manganese oxides in in vitro and in vivo models. Nanomaterials. 2021;11:1084–99. 10.3390/nano11051084. 10.3389/fbioe.2021.630352 Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, et al. Update on nanoparticle-based drug delivery system for anti-inflammatory treatment. Front Bioeng Biotechnol. 2021;9:1–9. 10.3389/fbioe.2021.630352. 10.3390/ma14040824 You W, Ahn JC, Boopathi V, Arunkumar L, Rupa EJ, Akter R, et al. Enhanced antiobesity efficacy of tryptophan using the nanoformulation of Dendropanax morbifera extract mediated with ZnO nanoparticle. Materials. 2021;14:824–38. 10.3390/ma14040824. 10.1016/j.envres.2021.111858 Cuong HN, Pansambal S, Ghotekar S, Oza R, Hai NTT, Viet NM, et al. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Env Res. 2022;203:111858–81. 10.1016/j.envres.2021.111858. 10.3390/nano11041005 Salayová A, Bedlovičová Z, Daneu N, Baláž M, Bujňáková ZL, Balážová L, et al. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: morphology and antibacterial efficacy. Nanomaterials. 2021;11:1005–24. 10.3390/nano11041005. 10.1007/s10876-020-01859-8 Aminuzzaman M, Chong CY, Goh W-S, Phang Y-K, Tey L-H, Chee S-Y, et al. Biosynthesis of NiO Nanoparticles using soursop (Annona muricata L.) fruit peel green waste and their photocatalytic performance on crystal violet dye. J Clust Sci. 2021;32:949–58. 10.1007/s10876-020-01859-8. 10.1088/2053-1591/abd421 Khan A, Shabir D, Ahmad P, Khandaker MU, Faruque MRI, Din IU. Biosynthesis and antibacterial activity of MgO-NPs produced from Camellia-sinensis leaves extract. Mater Res Express. 2021;8:015402–11. 10.1088/2053-1591/abd421. Haneefa MM, Jayandran M, Balasubramanian V. Green synthesis characterization and antimicrobial activity evaluation of manganese oxide nanoparticles and comparative studies with salicylalchitosan functionalized nanoform. Asian J Pharm. 2017;11:65–74. 10.3389/fmicb.2020.588326 Ogunyemi SO, Zhang M, Abdallah Y, Ahmed T, Qiu W, Ali MA, et al. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen. Front Microbiol. 2020;11:1–14. 10.3389/fmicb.2020.588326. Prasanth R, Dinesh Kumar S, Jayalakshmi A, Singaravelu G, Govindaraju K, Ganesh Kumar V. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian J Geo Mar Sci. 2019;48:1210–5. 10.1080/24701556.2019.1661464 Aminuzzaman M, Ng PS, Goh W-S, Ogawa S, Watanabe A. Value-adding to dragon fruit (Hylocereus polyrhizus) peel biowaste: green synthesis of ZnO nanoparticles and their characterization. Inorg Nano-Metal Chem. 2019;49:401–11. 10.1080/24701556.2019.1661464. Sharma S, Yadav DK, Chawla K, Lai N, Lai C. Synthesis and characterization of CuO nanoparticles by Aloe barbadensis leaves. Quantum J Eng Sci Technol. 2021;2:1–9. Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J Nanomed Nanotechnol. 2013;4:165–71. 10.4172/2157-7439.1000165. 10.1016/j.arabjc.2015.11.002 Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem. 2019;12:3576–600. 10.1016/j.arabjc.2015.11.002. 10.1038/s41598-020-65949-3 Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. 2020;10:9055–64. 10.1038/s41598-020-65949-3. 10.1590/fst.35521 Hiew CW, Lee LJ, Junus S, Tan YN, Chai TT, Ee KY. Optimization of microwave-assisted extraction and the effect of microencapsulation on mangosteen (Garcinia mangostana L.) rind extract. Food Sci Technol. 2021;42:1–10. 10.1590/fst.35521. 10.3390/nano11123337 Huang X, Zhou X, Dai Q, Qin Z. Antibacterial, antioxidation, UV-blocking, and biodegradable soy protein isolate food packaging film with mangosteen peel extract and ZnO nanoparticles. Nanomaterials. 2021;11:3337–52. 10.3390/nano11123337. 10.3390/polym13101581 Mohd Basri MS, Ren BLM, Talib RA, Zakaria R, Kamarudin SH. Novel mangosteen-leaves-based marker ink color lightness, viscosity, optimized composition, and microstructural analysis. Polymers. 2021;13:1581–98. 10.3390/polym13101581. 10.1088/1755-1315/739/1/012076 Mulyono D, Irawati Y, Syah MJA. Identification morphological variability of six mangosteen (Garcinia mangostana L.) as a conservation strategy for local varieties. IOP Conf Ser Earth Env Sci. 2021;739:012076–82. 10.1088/1755-1315/739/1/012076. 10.1088/1755-1315/782/4/042056 Syahputra MR, Setiado H, Siregar LAM, Damanik RI. Morphological characteristics of mangosteen plants (Garcinia mangostana L.) in Langkat District, North Sumatera, Indonesia. IOP Conf Ser Earth Env Sci. 2021;782:042056–62. 10.1088/1755-1315/782/4/042056. 10.1016/j.jare.2019.05.005 Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, ‘the queen of fruits,’ and new advances in postharvest and in food and engineering applications: A review. J Adv Res. 2019;20:61–70. 10.1016/j.jare.2019.05.005. 10.22270/ajprd.v9i1.927 Andani R, Fajrina A, Asra R, Eriadi A. Antibacterial activity test of mangosteen plants (Garcinia mangostana L.): A review. Asian J Pharm Res Dev. 2021;9:164–71. 10.22270/ajprd.v9i1.927. 10.22146/jfps.1008 Diniatik D, Anggraeni RS. Antibacterial (Staphylococcus aureus and Escherichia coli) and Antifungal (Saccharomyces cerevisiae) activity assay on nanoemulsion formulation of ethanol extract of mangosteen leaves (Garcinia mangostana L.) as fruit preservative. J Food Pharm Sci. 2021;9:351–65. 10.22146/jfps.1008. 10.53523/ijoirVol8I2ID69 Jassim AMN, Shafy GM, Mohammed MT, Farhan SA, Noori OM. Antioxidant, anti-inflammatory and wound healing of biosynthetic gold nanoparticles using mangosteen (G. mangostona). Iraqi J Ind Res. 2021;8:59–74. 10.53523/ijoirVol8I2ID69. 10.3390/nano12203589 Chan YB, Selvanathan V, Tey L-H, Akhtaruzzaman M, Anur FH, Djearamane S, et al. Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from Garcinia mangostana L. leaf extract. Nanomaterials. 2022;12:3589–607. 10.3390/nano12203589. 10.3390/ma16155421 Chan YB, Aminuzzaman M, Tey L-H, Win YF, Watanabe A, Djearamame S, et al. Impact of diverse parameters on the physicochemical characteristics of green-synthesized zinc oxide-copper oxide nanocomposites derived from an aqueous extract of Garcinia mangostana L. leaf. Materials. 2023;16:5421–39. 10.3390/ma16155421. 10.1515/gps-2023-0251 Chan YB, Aminuzzaman M, Rahman MK, Win YF, Sultana S, Cheah S-Y, et al. Green synthesis of ZnO nanoparticles using the mangosteen (Garcinia mangostana L.) leaf extract: comparative preliminary in vitro antibacterial study. Green Process Synth. 2024;13:20230251–70. 10.1515/gps-2023-0251. 10.3390/catal14080486 Chan YB, Aminuzzaman M, Win YF, Djearamane S, Wong LS, Guha SK, et al. Garcinia mangostana L. leaf-extract-assisted green synthesis of CuO, ZnO and CuO-ZnO nanomaterials for the photocatalytic degradation of palm oil mill effluent (POME). Catalysts. 2024;14:486–503. 10.3390/catal14080486. 10.1016/j.biori.2017.11.001 Karthiga P. Preparation of silver nanoparticles by Garcinia mangostana stem extract and investigation of the antimicrobial properties. Biotechnol Res Innov. 2018;2:30–6. 10.1016/j.biori.2017.11.001. 10.1016/j.jece.2017.09.026 Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Env Chem Eng. 2017;5:4866–83. 10.1016/j.jece.2017.09.026. 10.3390/su13020796 Phang Y-K, Aminuzzaman M, Akhtaruzzaman M, Muhammad G, Ogawa S, Watanabe A, et al. Green synthesis and characterization of CuO nanoparticles derived from papaya peel extract for the photocatalytic degradation of palm oil mill effluent (POME). Sustainability. 2021;13:796–810. 10.3390/su13020796. 10.1016/j.inoche.2020.108369 Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, et al. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg Chem Commun. 2020;123:108369. 10.1016/j.inoche.2020.108369. 10.1080/10408398.2020.1722060 Efenberger-Szmechtyk M, Nowak A, Czyzowska A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit Rev Food Sci Nutr. 2020;61:149–78. 10.1080/10408398.2020.1722060. Shammout MW, Awwad AM. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Int Sci Organ. 2021;7:71–8. 10.5281/zenodo.4042902. 10.1021/sc300118u Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. Sustain Chem Eng. 2013;1:591–602. 10.1021/sc300118u. Zhu Y. Relationship of total phenolic contents, DPPH activities and anti-lipid-oxidation capabilities of different bioactive beverages and phenolic antioxidants. LSU Master’s Theses. Louisiana State University and Agricultural and Mechanical College; 2014. 10.3390/ma14216379 Selvanathan V, Aminuzzaman M, Tey L-H, Razali SA, Althubeiti K, Alkhammash HI, et al. Muntingia calabura leaves mediated green synthesis of CuO nanorods: Exploiting phytochemicals for unique morphology. Materials. 2021;14:6379–90. 10.3390/ma14216379. 10.1016/j.jmrt.2022.08.028 Selvanathan V, Aminuzzaman M, Tan LX, Win YF, Cheah ESG, Heng MH, et al. Synthesis, characterization, and preliminary in vitro antibacterial evaluation of ZnO nanoparticles derived from soursop (Annona muricata L.) leaf extract as a green reducing agent. J Mater Res Technol. 2022;20:2931–41. 10.1016/j.jmrt.2022.08.028. 10.4028/p-od359h Cheah S-Y, Tey L-H, Aminuzzaman M, Phang Y-K, Chan YB, Djearamane S, et al. Green synthesis and characterizations of chromium oxide nanoparticles (Cr2O3 NPs) derived from pomegranate husk and its α-amylase inhibitory and antioxidant properties. Nano Hybrids Compos. 2023;39:51–5. 10.4028/p-od359h. 10.1016/j.jksus.2023.103080 Sasidharan S, Tey L-H, Djearamane S, Rashid NKMA, Raajeswari P, Wong LS, et al. Development of novel biofilm using Musa acuminata (waste banana leaves) mediated biogenic zinc oxide nanoparticles reinforced with chitosan blend. J King Saud Univ - Sci. 2024;36:103080–90. 10.1016/j.jksus.2023.103080. 10.4236/ajps.2018.95078 de Jesus Matos Viégas I, Cordeiro RAM, de Almeida GM, Silva DAS, da Silva BC, Okumura RS, et al. Growth and visual symptoms of nutrients deficiency in mangosteens (Garcinia mangostana L.). Am J Plant Sci. 2018;9:1014–28. 10.4236/ajps.2018.95078. 10.3390/molecules27248775 Yuvanatemiya V, Srean P, Klangbud WK, Venkatachalam K, Wongsa J, Parametthanuwat T, et al. A review of the influence of various extraction techniques and the biological effects of the xanthones from mangosteen (Garcinia mangostana L.) pericarps. Molecules. 2022;27:8775–93. 10.3390/molecules27248775. 10.1007/s12034-018-1568-4 Aminuzzaman M, Lim PY, Goh WS, Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci. 2018;41:50–9. 10.1007/s12034-018-1568-4. Abdumutalovna MS, Urmanovna MD. Technology of in vitro propagation of mangosteen in the climatic conditions of Uzbekistan. Nat Volatiles Essent Oils. 2021;8:5610–7. 10.1155/2013/621459 Negi JS, Bisht VK, Singh P, Rawat MSM, Joshi GP. Naturally occurring xanthones: Chemistry and biology. J Appl Chem. 2013;2013:1–9. 10.1155/2013/621459. 10.1002/ptr.2730 Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostana L.: A phytochemical and pharmacological review. Phyther Res. 2009;23:1047–65. 10.1002/ptr.2730. 10.1186/s12951-018-0408-4 Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018;16:84–107. 10.1186/s12951-018-0408-4. 10.3390/ma8115377 Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–308. 10.3390/ma8115377. 10.1007/s40089-017-0205-3 Kumar V, Singh K, Panwar S, Mehta SK. Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. Int Nano Lett. 2017;7:123–31. 10.1007/s40089-017-0205-3. 10.1016/j.chemosphere.2021.129794 Jamila N, Khan N, Bibi N, Waqas M, Khan SN, Atlas A, et al. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. Chemosphere. 2021;272:12974–90. 10.1016/j.chemosphere.2021.129794. 10.1155/2021/5527519 Trang NLN, Hoang VT, Dinh NX, Tam LT, Le VP, Linh DT, et al. Novel eco-friendly synthesis of biosilver nanoparticles as a colorimetric probe for highly selective detection of Fe (III) ions in aqueous solution. J Nanomater. 2021;2021:1–17. 10.1155/2021/5527519. 10.1007/s42452-020-03640-y Perera KMKG, Kuruppu KASS, Chamara AMR, Thiripuranathar G. Characterization of spherical Ag nanoparticles synthesized from the agricultural wastes of Garcinia mangostana and Nephelium lappaceum and their applications as a photo catalyzer and fluorescence quencher. SN Appl Sci. 2020;2:1974–97. 10.1007/s42452-020-03640-y. Gupta N, Gupta C, Sharma S, Sharma RK, Bohidar HB. Comparative study of antibacterial activity of standard antibiotic with silver nanoparticles synthesized using Ocimum tenuiflorum and Garcinia mangostana leaves. Chem Biol Lett. 2015;2:41–4. 10.1016/j.jscs.2010.06.004 Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, et al. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc. 2011;15:113–20. 10.1016/j.jscs.2010.06.004. 10.1007/s10876-018-1441-z Karthiga P, Rajeshkumar S, Annadurai G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J Clust Sci. 2018;29:1233–41. 10.1007/s10876-018-1441-z. 10.1016/j.jphotobiol.2018.03.004 Zhang X, Xiao C. Biofabrication of silver nanoparticles and their combined effect with low intensity ultrasound for treatment of lung cancer. J Photochem Photobiol B Biol. 2018;181:122–6. 10.1016/j.jphotobiol.2018.03.004. 10.3923/rjnn.2012.46.57 Karthiga P, Soranam R. Annadurai G. Alpha-mangostin, the major compound from Garcinia mangostana Linn. responsible for synthesis of Ag nanoparticles: Its characterization and evaluation studies. Res J Nanosci Nanotechnol. 2012;2:46–57. 10.3923/rjnn.2012.46.57. Rajakannu S, Shankar S, Perumal S, Subramanian S, Dhakshinamoorthy GP. Biosynthesis of silver nanoparticles using Garcinia mangostana fruit extract and their antibacterial, antioxidant activity. Int J Curr Microbiol Appl Sci. 2015;4:944–52. 10.1016/j.msec.2018.11.050 Nishanthi R, Malathi S, Paul SJ, Palani P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C. 2019;96:693–707. 10.1016/j.msec.2018.11.050. 10.51470/PLANTARCHIVES.2021.v21.no2.043 Madhavan M, Elsa RP, Francis A, Benny GM, Wilson A. Green synthesis of silver nanoparticles from fruit rind extract of Garcinia mangostana L. and evaluation of antibacterial properties. Plant Arch. 2021;21:279–83. 10.51470/PLANTARCHIVES.2021.v21.no2.043. 10.2147/IJN.S140190 Park JS, Ahn EY, Park Y. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts. Int J Nanomed. 2017;12:6895–908. 10.2147/ijn.s140190. 10.2174/1573413716666201222111244 Le NTT, Thi TTH, Ching YC, Nguyen NH, Nguyen DYP, Truong QM, et al. Garcinia mangostana shell and Tradescantia spathacea leaf extract-mediated one-pot synthesis of silver nanoparticles with effective antifungal properties. Curr Nanosci. 2021;17:762–71. 10.2174/1573413716666201222111244. 10.3390/nano9101423 Lee KX, Shameli K, Mohamad SE, Yew YP, Isa EDM, Yap H-Y, et al. Bio-mediated synthesis and characterisation of silver nanocarrier, and its potent anticancer action. Nanomaterials. 2019;9:1423–41. 10.3390/nano9101423. 10.3390/ani10040573 Alkhuriji AF, Majrashi NA, Alomar S, El-Khadragy MF, Awad MA, Khatab AR, et al. The beneficial effect of eco-friendly green nanoparticles using Garcinia mangostana peel extract against pathogenicity of Listeria monocytogenes in female BALB/c mice. Animals. 2020;10:573–86. 10.3390/ani10040573. 10.1109/NANO.2016.7751498 Nishanthi R, Palani P. Green synthesis of gold nanoparticles from the rind extract of Garcinia mangostana and its synergistic effect with antibiotics against human pathogenic bacteria. IEEE-NANO. 2013;2016:431–4. 10.1109/NANO.2016.7751498. 10.1109/TNANO.2017.2728600 Lee KX, Shameli K, Miyake M, Ahmad Khairudin NBB, Mohamad SEB, Hara H, et al. Gold nanoparticles biosynthesis: a simple route for control size using waste peel extract. IEEE Trans Nanotechnol. 2017;16:954–7. 10.1109/TNANO.2017.2728600. 10.1038/s41598-021-92662-6 Sivakavinesan M, Vanaja M, Annadurai G. Dyeing of cotton fabric materials with biogenic gold nanoparticles. Sci Rep. 2021;11:13249–59. 10.1038/s41598-021-92662-6. 10.1155/2016/8489094 Lee KX, Shameli K, Miyake M, Kuwano N, Ahmad Khairudin NBB, Mohamad SEB, et al. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater. 2016;2016:1–7. 10.1155/2016/8489094. 10.1088/2632-959X/aba862 Kuruppu K, Perera K, Chamara AMR, Thiripuranathar G. Flower shaped ZnO-NPs; phytofabrication, photocatalytic, fluorescence quenching, and photoluminescence activities. Nano Express. 2020;1:020020–37. 10.1088/2632-959X/aba862. 10.1155/2014/417305 Patra JK, Baek KH. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J Nanomater. 2014;2014:1–12. 10.1155/2014/417305. 10.3390/ijms21228458 Kumar H, Bhardwaj K, Dhanjal DS, Nepovimova E, Șen F, Regassa H, et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int J Mol Sci. 2020;21:8458–75. 10.3390/ijms21228458. Vaseem M, Umar A, Hahn YB. Umar A, Hahn YB, eds. ZnO nanoparticles: Growth, properties, and applications, in Metal oxide nanostructures and their applications. Vol. 5, American Scientific Publishers; 2010. p. 1–36. 10.1155/2018/1062562 Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1–19. 10.1155/2018/1062562. 10.3390/ma15103602 Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of bioactive metals/metal oxides and their nanocomposites with antibacterial drugs for biomedical applications. Materials. 2022;15:3602–21. 10.3390/ma15103602. 10.1016/j.btre.2020.e00427 Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep. 2020;25:e00427–37. 10.1016/j.btre.2020.e00427. 10.3390/microorganisms9020364 Amaro F, Morón Á, Díaz S, Martín-González A, Gutiérrez JC. Metallic nanoparticles-friends or foes in the battle against antibiotic-resistant bacteria? Microorganisms. 2021;9:364–73. 10.3390/microorganisms9020364. 10.3390/ijms20112808 Niño-Martínez N, Orozco MFS, Martínez-Castañón G-A, Méndez FT, Ruiz F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci. 2019;20:2808–22. 10.3390/ijms20112808. 10.1080/15569543.2016.1237527 Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Pirsaheb M, Rastegar SO, et al. A review of available techniques for determination of nano-antimicrobials activity. Toxin Rev. 2016;36:18–32. 10.1080/15569543.2016.1237527. 10.3390/antibiotics11040427 Gajic I, Kabic J, Kekic D, Jovicevic M, Milenkovic M, Culafic DM, et al. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics. 2022;11:427–52. 10.3390/antibiotics11040427. 10.1186/s13756-019-0559-6 Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob Resist Infect Control. 2019;8:18–45. 10.1186/s13756-019-0559-6. 10.2147/IJN.S121956 Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomed. 2017;12:1227–49. 10.2147/IJN.S121956. 10.3390/jcs3020061 Nguyen VT, Vu VT, Nguyen TH, Nguyen TA, Tran VK, Nguyen-Tri P. Antibacterial activity of TiO2-and ZnO-decorated with silver nanoparticles. J Compos Sci. 2019;3:61–75. 10.3390/jcs3020061. 10.3390/plants10050852 Hernández-Ceja A, Loeza-Lara PD, Espinosa-García FJ, García-Rodríguez YM, Medina-Medrano JR, Gutiérrez-Hernández GF, et al. In vitro antifungal activity of plant extracts on pathogenic fungi of blueberry (Vaccinium sp.). Plants. 2021;10:852–63. 10.3390/plants10050852. 10.4103/ijcm.IJCM_140_19 Latti P, Ramanarayanan S, Prashant GM. Antifungal efficacy of spice extracts against Candida albicans: An in vitro study. Indian J Community Med. 2019;44:77–80. 10.4103/ijcm.IJCM_140_19. 10.3390/plants10102153 Mare AD, Ciurea CN, Man A, Mareș M, Toma F, Berța L, et al. In vitro antifungal activity of silver nanoparticles biosynthesized with beech bark extract. Plants. 2021;10:2153–67. 10.3390/plants10102153. 10.1016/j.jfca.2011.01.008 Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal. 2011;24:1043–8. 10.1016/j.jfca.2011.01.008. 10.3390/ijms21031131 Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int J Mol Sci. 2020;21:1131–57. 10.3390/ijms21031131. 10.1088/1755-1315/709/1/012025 Kiptiyah SY, Harmayani E, Santoso U. The effect of blanching and extraction method on total phenolic content, total flavonoid content and antioxidant activity of kencur (Kaempferia galanga. L) extract. IOP Conf Ser Earth Env Sci. 2021;709:012025. 10.1088/1755-1315/709/1/012025. 10.1088/1755-1315/712/1/012005 Sasadara MMV, Wirawan IGP. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of bulung sangu (Gracilaria sp.) seaweed. IOP Conf Ser Earth Env Sci. 2021;712:012005–13. 10.1088/1755-1315/712/1/012005. 10.4172/2329-6836.1000341 Kumara P, Sunil K, Arun Kumar B. Determination of DPPH free radical scavenging activity by RP-HPLC, rapid sensitive method for the screening of berry fruit juice freeze dried extract. Nat Prod Chem Res. 2018;6:100341–7. 10.4172/2329-6836.1000341. 10.19080/OMCIJ.2018.05.555667 Ahmed F, Iqbal M. Antioxidant activity of Ricinus communis. Org Med Chem Int J. 2018;5:107–12. 10.19080/omcij.2018.05.555667. 10.1111/j.1541-4337.2011.00173.x Craft BD, Kerrihard AL, Amarowicz R, Pegg RB. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr Rev Food Sci Food Saf. 2012;11:148–73. 10.1111/j.1541-4337.2011.00173.x. 10.1039/b009171p Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127:183–98. 10.1039/b009171p.

Item Type: Article
Subjects: Biotechnology > Nanotechnology
Domains: Biotechnology
Depositing User: Mr IR Admin
Date Deposited: 07 Aug 2025 09:11
Last Modified: 07 Aug 2025 09:11
URI: https://ir.vistas.ac.in/id/eprint/9838

Actions (login required)

View Item
View Item