Islam, Md. Rezaul and Al‐Imran, Md. Ibrahim Khalil and Zehravi, Mehrukh and Sweilam, Sherouk Hussein and Mortuza, Mohammad Rakib and Gupta, Jeetendra Kumar and Shanmugarajan, Thukani Sathanantham and Devi, Kadirvel and Tummala, Tanuja and Alshehri, Mohammed Ali and Rajagopal, Kalirajan and Asiri, Mohammed and Ahmad, Irfan and Emran, Talha Bin (2025) Targeting signaling pathways in neurodegenerative diseases: Quercetin's cellular and molecular mechanisms for neuroprotection. Animal Models and Experimental Medicine, 8 (5). pp. 798-818. ISSN 2576-2095
![[thumbnail of AME2-8-798.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
AME2-8-798.pdf
Download (6MB)
Abstract
Targeting signaling pathways in neurodegenerative diseases: Quercetin's cellular and molecular mechanisms for neuroprotection Md. Rezaul Islam Department of Pharmacy, Faculty of Health and Life Sciences Daffodil International University Daffodil Smart City Bangladesh https://orcid.org/0000-0001-6949-8837 Md. Ibrahim Khalil Al‐Imran Department of Pharmacy, Faculty of Health and Life Sciences Daffodil International University Daffodil Smart City Bangladesh Mehrukh Zehravi Department of Clinical Pharmacy College of Dentistry and Pharmacy, Buraydah Private Colleges Buraydah Saudi Arabia Sherouk Hussein Sweilam Department of Pharmacognosy College of Pharmacy, Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia Department of Pharmacognosy, Faculty of Pharmacy Egyptian Russian University Cairo Egypt Mohammad Rakib Mortuza Department of Chemistry and Biochemistry Lamar University Beaumont Texas USA Jeetendra Kumar Gupta Department of Pharmacology Institute of Pharmaceutical Research, GLA University Mathura India Thukani Sathanantham Shanmugarajan Department of Pharmaceutics, School of Pharmaceutical Sciences Vels Institute of Science, Technology and Advanced Studies (VISTAS) Chennai India Kadirvel Devi Department of Pharmaceutics, School of Pharmaceutical Sciences Vels Institute of Science, Technology and Advanced Studies (VISTAS) Chennai India Tanuja Tummala Department of Polymer Chemistry Pittsburg State University Pittsburg Kansas USA Mohammed Ali Alshehri Department of Biology, Faculty of Science University of Tabuk Tabuk Saudi Arabia Kalirajan Rajagopal Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty India Mohammed Asiri Department of Clinical Laboratory Sciences College of Applied Medical Science, King Khalid University Abha Saudi Arabia Irfan Ahmad Department of Clinical Laboratory Sciences College of Applied Medical Science, King Khalid University Abha Saudi Arabia Talha Bin Emran Department of Pharmacy, Faculty of Health and Life Sciences Daffodil International University Daffodil Smart City Bangladesh Abstract Background
Neurodegenerative diseases (NDs), including Alzheimer‘s disease, Parkinson‘s disease, and Huntington‘s disease, are complex and challenging due to their intricate pathophysiology and limited treatment options.
Methods
This review systematically sourced articles related to neurodegenerative diseases, neurodegeneration, quercetin, and clinical studies from primary medical databases, including Scopus, PubMed, and Web of Science.
Results
Recent studies have included quercetin to impact the cellular and molecular pathways involved in neurodegeneration. Quercetin, a flavonoid abundant in vegetables and fruits, is gaining attention for its antioxidant, anti‐inflammatory, and antiapoptotic properties. It regulates signaling pathways such as nuclear factor‐κB (NF‐κB), sirtuins, and phosphatidylinositol 3‐kinase/protein kinase B (PI3K/Akt). These pathways are essential for cellular survival, inflammation regulation, and apoptosis. Preclinical and clinical studies have shown that quercetin improves symptoms and pathology in neurodegenerative models, indicating promising outcomes.
Conclusions
The study explores the potential of incorporating laboratory research into practical medical treatment, focusing on quercetin‘s neuroprotective effects on NDs and its optimal dosage.
01 22 2025 05 2025 798 818 10.1002/ame2.12551 2 10.1002/crossmark_policy onlinelibrary.wiley.com true 2024-08-22 2024-12-15 2025-01-22 http://creativecommons.org/licenses/by/4.0/ 10.1002/ame2.12551 https://onlinelibrary.wiley.com/doi/10.1002/ame2.12551 https://onlinelibrary.wiley.com/doi/pdf/10.1002/ame2.12551 10.1021/jacs.5b13577 10.1016/j.cell.2006.06.010 10.1186/1756-6606-4-3 10.1007/978-3-319-28383-8_12 10.1159/000515030 10.1007/s12035-020-01929-y 10.1186/1471-2458-14-653 10.1515/revneuro-2018-0080 10.1016/j.biopha.2016.10.011 Altern Med Rev Kelly GS 172 16 2 2011 Quercetin 10.2174/1570159X20666220810105421 10.3390/nu14235132 10.1016/j.jnutbio.2014.10.008 10.1093/jn/135.7.1718 10.1093/jn/128.3.593 10.1093/ajcn/81.1.230S 10.1093/ajcn/79.5.727 10.3109/10715760903407293 10.1016/S0891-5849(01)00522-6 10.1080/10715760600794287 10.1055/s-0030-1250735 10.1016/j.abb.2014.03.003 10.1016/j.jnutbio.2011.08.007 10.1080/10715760310001615998 10.2478/s11658-010-0006-4 10.1007/s12263-011-0255-5 10.1016/j.freeradbiomed.2011.06.017 10.1016/j.phrs.2009.08.006 10.2174/1874609810801030169 10.1111/j.2042-7158.2010.01225.x 10.1039/C4FO00817K 10.1177/00912700122010366 10.12944/CRNFSJ.4.Special-Issue-October.20 10.3389/fncel.2018.00072 10.2174/1874609810666170315113244 10.1186/s41232-020-00137-4 10.3389/fnins.2019.00916 10.1016/j.mcn.2019.01.003 10.3390/molecules24122287 10.1007/s11064-014-1343-x 10.1016/j.ijpharm.2016.11.061 10.1016/j.neuropharm.2015.01.027 10.1155/2020/8210578 10.5455/njppp.2015.5.2308201563 10.1097/WNR.0000000000000594 10.1016/j.lfs.2021.119964 10.1002/ddr.21567 EXCLI J Molaei A 596 19 2020 Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in animal model of Alzheimer's disease 10.3844/ajabssp.2010.286.293 10.3389/fnins.2020.598617 10.1080/2314808X.2022.2164136 Egypt J Chem Elreedy HA 633 65 4 2022 Effect of quercetin as therapeutic and protective agent in aluminum chloride‐induced Alzheimer's disease rats 10.1155/2012/823206 10.1002/jbt.21821 10.18632/aging.202868 10.1007/s12031-014-0400-x 10.1016/j.neuroscience.2013.01.032 10.1155/2012/284963 Avicenna J Phytomed Naghizadeh M 599 11 6 2021 Effects of quercetin on spatial memory, hippocampal antioxidant defense and BDNF concentration in a rat model of Parkinson's disease: an electrophysiological study Gen Med (Los Angel) Díaz M 2 3 207 2015 Assessment of the protective capacity of nanosomes of quercetin in an experimental model of parkinsons disease in the rat 10.1080/10715760500233113 10.1007/s11064-015-1542-0 10.1016/j.neulet.2011.06.021 10.1007/s11055-017-0508-x Int J Mol Med Zhang ZJ 195 27 2 2011 Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro‐inflammation gene expression in PC12 cells and in zebrafish 10.1016/j.brainres.2008.01.089 10.1159/000069533 10.1016/j.neures.2017.10.006 10.5455/jice.20140903012921 BhimanwarAA GhaisasMM SheteRV.Silymarin quercetin and hesperidin combination ameliorate learning and memory deficit in 3 nitro propionic acid induced rat model of Huntington's disease. Available at SSRN 40040562022. 10.1016/j.jns.2013.07.498 Eurasian Chem Commun Saadat M 432 4 2022 Beneficial effects of nano‐phytosome of quercetin on inflammatory parameters in mouse model of multiple sclerosis Cell Journal (Yakhteh) Ahmadi L 110 25 2 2023 The immunomodulatory aspect of quercetin penta acetate on Th17 cells proliferation and gene expression in multiple sclerosis 10.1038/sc.2015.227 10.1186/s12974-019-1613-2 10.1002/jcb.26392 10.1016/j.lfs.2013.05.007 Ulus Travma Acil Cerrahi Derg Çiftçi U 423 22 5 2016 Efficiacy of resveratrol and quercetin after experimental spinal cord injury 10.1016/j.jss.2013.02.016 10.1038/sc.2010.45 10.1038/sc.2009.111 Chin J Traumatol Liu J‐b 303 9 5 2006 Antioxidation of quercetin against spinal cord injury in rats 10.1017/S0317167100009963 10.1016/j.jchemneu.2023.102231 10.1186/s41232-022-00245-3 10.1016/j.acthis.2020.151554 10.3389/fphar.2018.01383 10.1016/j.neulet.2011.09.028 10.1016/j.pnpbp.2012.08.018 10.1002/jbt.23165 10.1007/s12035-016-9950-y 10.1016/j.lfs.2014.03.033 10.1089/jmf.2006.0207 10.1016/j.neulet.2012.08.082 EbrahimiA ParivarK RoodbariNH‐E EidiA.Investigating the effect of quercetin on disease progression and recovery process in experimental autoimmune encephalomyelitis (EAE's) rats.2023. 10.1007/s11033-023-08707-8 10.1016/j.nutres.2018.04.004 10.1016/j.biopha.2018.02.125 10.1080/01616412.2016.1240393 10.1093/jrr/rry032 10.1002/mnfr.201400014 10.4103/0973-7847.194044 10.1016/j.nbd.2009.02.003 10.1016/j.bbagen.2008.01.017 10.1155/2013/943520 10.1249/JSR.0b013e3181ae8959 10.1111/bcp.12621 10.1016/j.ijdevneu.2005.11.014 10.1016/j.jnutbio.2008.03.002 10.1371/journal.pone.0051324 10.1016/j.bbr.2010.01.017 10.1517/14740330903026944 10.3390/biom10010059 10.1111/jnc.14033 10.1111/j.1471-4159.2008.05347.x 10.2174/1871527315666160813175406 10.1007/s12035-016-0203-x 10.1016/j.tox.2006.03.007 10.1016/j.physbeh.2017.01.006 10.1177/0748233713486960 10.1016/j.jep.2009.08.023 10.1007/PL00022916 10.2131/jts.38.25 10.1007/s12640-011-9295-2 10.3390/foods9030374 10.1007/s11356-022-19428-z 10.4103/1673-5374.211194 10.1016/j.neuroscience.2016.02.055 10.1016/S0140-6736(07)60111-1 10.1016/j.bbadis.2012.11.018 10.1111/cns.12189 10.1016/j.jneuroim.2008.09.008 10.3389/fchem.2023.1250043 10.29252/ismj.22.1.1 10.1016/S0140-6736(22)01272-7 10.1016/j.biopha.2023.114515 10.1093/protein/gzx025 10.1016/S0022-510X(00)00317-8 10.1186/s40035-017-0102-8 10.1021/acschemneuro.9b00677 10.3389/fneur.2022.905640 10.1111/1440-1681.13573 10.1016/j.bbcan.2014.09.008 10.1016/j.physbeh.2014.09.008 10.1249/MSS.0000000000000310 10.3109/10799893.2015.1049363 10.1523/JNEUROSCI.5657-12.2013 10.3233/JAD-2009-1189 10.1074/jbc.M602909200 10.1016/j.mad.2006.02.007 10.1016/S0006-2952(02)01609-X 10.1016/j.virusres.2015.05.015 10.1016/j.bbadis.2013.12.011 10.1021/jf304768p 10.1016/j.biopha.2020.110373 10.1016/j.abb.2008.01.028 10.1016/j.fct.2014.07.038 10.1016/j.freeradbiomed.2007.02.017 10.1016/j.bbrc.2017.07.151 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H 10.1007/978-1-4419-7756-4_38 10.1002/jnr.21503 10.1002/ptr.5732 10.1371/journal.pone.0096795 10.1111/j.1471-4159.2009.05908.x 10.1016/j.bcp.2003.10.018 10.1016/B978-0-12-396456-4.00013-4 10.2174/1573399815666191111152248 10.1016/S1359-6446(04)03251-9 10.4155/fmc.15.132 10.1046/j.1523-1755.2000.00265.x 10.1038/380075a0 10.1074/jbc.274.4.2234 10.4062/biomolther.2016.026 10.1194/jlr.M400511-JLR200 10.1074/jbc.M605379200 10.1016/j.freeradbiomed.2008.03.023 10.1016/j.taap.2011.02.014 10.1089/ars.2010.3430 10.1016/j.freeradbiomed.2013.01.019 10.1074/jbc.M110.118604 10.1016/j.neuro.2013.08.011 10.1161/01.ATV.0000059385.95664.4D 10.1161/CIRCULATIONAHA.106.681700 10.1016/B978-0-12-802147-7.00001-2 10.1007/s11064-013-1085-1 10.1080/01635580902825571 10.4161/jkst.22925 10.1016/j.clim.2016.09.014 10.1177/09727531211070532 10.1371/journal.pone.0057735 10.1097/MD.0000000000022241 10.1016/j.biopha.2021.111729 10.1016/j.redox.2021.102010 10.1016/j.trsl.2022.08.006 10.3389/fimmu.2022.1109938 10.3389/fimmu.2022.943321 10.3389/fimmu.2022.1006434 10.1155/2016/2986796 10.3389/fnut.2016.00031 10.3389/fpls.2015.00655 10.1016/j.freeradbiomed.2010.05.020 10.1007/s00709-015-0821-6 10.1007/s12640-011-9253-z 10.1016/j.jnutbio.2010.02.008 10.1007/s00204-011-0652-y 10.1016/j.fct.2015.05.003 10.1007/s11356-014-3885-5 10.1007/s11064-014-1457-1 10.5935/0004-2749.20150026 10.1016/j.pnpbp.2012.08.018 GeNeDis 2018 Genet Neurodegen Boyina HK 1 2020 2020 In silico and in vivo studies on quercetin as potential anti‐Parkinson agent 10.2174/1570159X14666161026151545 10.1016/j.cbi.2009.06.024 10.1016/j.colsurfb.2016.08.052 10.2174/1871520614666140521122932 10.3390/ijms21020493 10.1097/JCP.0b013e3181ee0f79 10.1177/2045125312445894 10.1111/acel.12344 10.14283/jpad.2021.62 10.3164/jcbn.21-17
Item Type: | Article |
---|---|
Subjects: | Pharmacology > Biometrics |
Domains: | Pharmacology |
Depositing User: | Mr IR Admin |
Date Deposited: | 07 Aug 2025 07:02 |
Last Modified: | 07 Aug 2025 07:02 |
URI: | https://ir.vistas.ac.in/id/eprint/9829 |