Ramyaalakshmi, A. and Poonguzhali, S. (2023) Accuracy in Teeth Structures Segmentation on MRI and CT Images:. In: Accuracy in Teeth Structures Segmentation on MRI and CT Images:. Springer, pp. 218-235.
Full text not available from this repository. (Request a copy)Abstract
A. Ramyaalakshmi   Vels Institute of Science, Technology, and Advanced Studies, India     S. Poonguzhali   Vels Institute of Science, Technology, and Advanced Studies, India   https://orcid.org/0000-0002-9118-9018    Accuracy in Teeth Structures Segmentation on MRI and CT Images    
Electronic illustrative advances have advanced extensively in the previous ten years. Different picture-based applications have really organized man-made insight, which is a basic accomplishment. These tasks can help clinical experts in diagnosing, choosing, and organizing prescriptions. These undertakings are entirely important since they are reliable, fast, and prepared for performing tasks normally with the capability of arranged prepared experts. These models may be a significant resource for orthodontists with limited understanding. Most of these models, regardless, have explicit obstacles, for instance, the unassuming number of datasets used for planning and testing these models and the immovable nature of the data as a result of how it was accumulated from a single machine or clinical facility.
  chapter 13  2023 10 18   218 235   10.4018/979-8-3693-0876-9.ch013 20231021111126 https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-0876-9.ch013   https://www.igi-global.com/viewtitle.aspx?TitleId=332836      10.1007/s10278-017-9983-4   10.1111/j.1365-2842.2010.02065.x   10.15537/smj.2017.12.20631   10.1016/j.ajodo.2020.08.014   10.1155/2020/5739312   10.1201/9781003429609-9   10.1371/journal.pone.0269198   10.1109/ICB.2012.6199831   10.1002/cnm.2747   10.1111/ocr.12542   10.1016/j.compbiomed.2022.105829   10.1109/ACCESS.2020.2991799   10.1097/SCS.0000000000005650   10.1111/ocr.12513   10.1002/14651858.ED000142   10.7861/futurehosp.6-2-94 Davenport, T., Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Futur Healthc J [Internet]. pmc/articles/PMC6616181/   10.3390/ijerph19031728   10.1038/s41598-019-44839-3   10.1111/ocr.12502   10.1259/dmfr.20170220   10.1109/JBHI.2017.2709406   10.1016/j.ajodo.2021.11.011   Tooth Segmentation From Cone-Beam CT using graph cut. L. T.Hiew Proceedings of the Second APSIPA Annual Summit and Conference HiewL. T.OngS. H.FoongK. W. C. (2010). Tooth Segmentation From Cone-Beam CT using graph cut.Proceedings of the Second APSIPA Annual Summit and Conference, Biopolis, Singapore.   10.5624/isd.2019.49.1.1   10.1259/dmfr   10.1038/s41598-020-62321-3   Joiner, I. A. (2021). Artificial Intelligence. Emerg Libr Technol. Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B97800   10.1016/j.ajodo.2015.07.030   10.3390/diagnostics11061004   10.1201/9781003429609-1   10.1201/9781003429609   10.1201/9781003356189   10.4018/978-1-6684-8851-5   10.1111/ocr.12514   10.1038/s41598-019-53758-2   10.1038/s41598-021-94362-7   10.5152/TurkJOrthod.2020.20059   10.1007/s00056-019-00203-8   10.1016/j.ajodo.2006.08.024   10.3390/jpm12030387   10.1016/j.oooo.2019.11.007   10.1007/s00784-020-03544-6   10.1177/1465312519840029   10.1038/s41598-018-38439-w   10.1016/j.ejrad.2009.03.042   10.4041/kjod.2022.52.2.112   10.1259/dmfr.20140313 Naumovich. S., Naumovich, S., & Goncharenko, V. (2015). Three dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation. Dentomaxil lofacial Radiol, 44, 20140313.   10.1111/ocr.12521   10.1097/SCS.0000000000004901   10.3390/ijerph18126201   Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., & Mulrow, C. D. (2022). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet].https://www.bmj.com/content/372/bmj.n71   10.2319/022019-127.1   10.1016/j.jdent.2022.104238   10.3390/jcm10163591   10.1016/j.oooo.2013.01.025   10.1016/j.oooo.2016.09.005   10.1016/j.eswa.2018.04.001   10.1155/2022/1880113   10.3390/bioengineering7020055   10.1088/1361-6560/aaf441   10.1038/sdata.2016.18   10.1007/978-3-030-00937-3_81 Wirtz, A., Mirashi, S. G., & Wesarg, S. (2018). Automatic teeth segmentation in panoramic X-Ray images using a coupled shape model in combination with a neural network. Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI. Springer. https://link.springer.com/chapter/10.1007/978-3-030-00937-3_81   10.1016/j.ajodo.2021.09.012   10.1177/0022034520901715   10.1016/j.media.2020.101904   10.1016/j.knosys.2020.106338 Zhao, Y., Li, P., Gao, C., Liu, Y., Chen, Q., Yang, F., & Meng, D. (2020). TSASNet: Tooth segmentation on dental panoramic X-ray images by Two-Stage Attention Segmentation Network. Knowl.-Based Syst., 206, 106338. https://www.sciencedirect.com/science/article/pii/S0950705120304950   10.3390/diagnostics11122200   10.1016/j.compbiomed.2022.106296
| Item Type: | Book Section | 
|---|---|
| Subjects: | Pharmacy Practice > Hospital & Community Pharmacy | 
| Domains: | Pharmacy Practice | 
| Depositing User: | Mr IR Admin | 
| Date Deposited: | 07 Oct 2024 09:56 | 
| Last Modified: | 07 Oct 2024 09:56 | 
| URI: | https://ir.vistas.ac.in/id/eprint/9336 | 



 Dimensions
 Dimensions Dimensions
 Dimensions