Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique

Muthukrishnaraj, Appusamy and Kalaivani, Semmedu Selvaraj and Visagamani, Arularasu M. and Ayyar, Manikandan and Kosiha, Arumugam and Dinesh, Ayyar and Padmapriya, Govindaswamy and Rathinavel, Subramanian and Padmavathi, Kandasamy and Hashem, Mohamed and Fouad, Hassan and Ansari, AbuZar (2024) Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique. Zeitschrift für Physikalische Chemie, 238 (3). pp. 593-614. ISSN 0942-9352

Full text not available from this repository. (Request a copy)

Abstract

Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique Appusamy Muthukrishnaraj Department of Science and Humanities (Chemistry), Faculty of Engineering , Karpagam Academy of Higher Education , Coimbatore , 641021 , India Semmedu Selvaraj Kalaivani Center for Computational Engineering and Networking (CEN) , Amrita Vishwa Vidyapeetham , Coimbatore 641112 , India Arularasu M. Visagamani Department of Electronic Engineering , Chang Gung University , Taoyuan City 33302 , Taiwan Manikandan Ayyar Department of Chemistry , Karpagam Academy of Higher Education , Coimbatore , 641021 , India Centre for Material Chemistry , Karpagam Academy of Higher Education , Coimbatore , 641021 , Tamil Nadu , India Arumugam Kosiha School of Basic Sciences , Vels Institute of Science, Technology & Advanced Studies (VISTAS) , Pallavaram , Chennai 600 117 , Tamil Nadu , India Ayyar Dinesh Department of Chemistry , Government Arts College for Men (Autonomous), Affiliated to the University of Madras , Chennai 600025 , Tamil Nadu , India Govindaswamy Padmapriya Department of Chemistry, Faculty of Arts and Science , Bharath Institute of Higher Education and Research (BIHER) , Chennai 600 073 , Tamil Nadu , India Subramanian Rathinavel Department of Electronics and Instrumentation, School of Physical Science , Bharathiar University , Coimbatore 46 , Tamil Nadu , India Kandasamy Padmavathi Department of Botany , Government Arts and Science College , Dharapuram 638661 , India Mohamed Hashem Department of Dental Health, College of Applied Medical Sciences , King Saud University , P.O. Box 12372 , Riyadh , Saudi Arabia Hassan Fouad Biomedical Engineering Dept., Faculty of Engineering , Helwan University , Helwan , Egypt AbuZar Ansari Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Mediciane , Ewha Womens University , Seoul 07984 , Republic of Korea Abstract

Electrocoagulation is an efficient treatment for the concurrent elimination organic and inorganic contaminants from tannery wastewater. The batch electrocoagulation investigations were carried out using mild steel and aluminium as sacrificial anodes and stainless steel as the cathode. Various operating constraints, such as the electrolyte pH, realistic current density, electrolysis time, effluent concentration and supporting electrolyte concentration were appraised to study their effects on electro-coagulation efficiency. The maximum Total Organic Carbon (TOC) removal has been observed was 90 % and 77 % under optimum operating conditions, and the maximum chromium removal has been recorded was 99 % and 90 % using mild steel and aluminium anodes respectively. The experimental data was also fitted with the first order kinetic model. The experimental data were investigated with the Langmuir and Freundlich adsorption isotherm models. The result shows that the experimental data fitted with the Langmuir isotherm model, with a rate of confidence of 0.98, using mild steel as an anode. The solid sludge and the liquid samples were characterized using the SEM (scanning electron microscopy) EDX (energy dispersive X-ray spectrometry), FT-IR (Fourier transform infrared spectrometer) and UV–Visible (Ultraviolet–visible spectroscopy) analyses. All experimental results show that mild steel was an efficient anode, for the instantaneous elimination of organic and inorganic contaminants from tannery wastewater.
03 25 2024 12 19 2023 03 01 2024 593 614 10.1515/zpch-2023-0393 King Saud University http://dx.doi.org/10.13039/501100002383 RSPD2023R680 10.1515/zpch-2023-0393 https://www.degruyter.com/document/doi/10.1515/zpch-2023-0393/html https://www.degruyter.com/document/doi/10.1515/zpch-2023-0393/pdf https://www.degruyter.com/document/doi/10.1515/zpch-2023-0393/xml 10.1016/j.jece.2020.104379 Kanagaraj, J., Panda, R. C., Vinodh Kumar, M. Trends and advancements in sustainable leather processing: future directions and challenges—a review. J. Environ. Chem. Eng. 2020, 8, 104379; https://doi.org/10.1016/j.jece.2020.104379. 10.1016/j.desal.2011.04.014 Benhadji, A., Ahmed, M. T., Maachi, R. Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination 2011, 77, 128–134; https://doi.org/10.1016/j.desal.2011.04.014. 10.1016/j.jhazmat.2007.09.005 Costa, C. R., Botta, C. M. R., Espindola, E. L. G., Olivi, P. Electrochemical treatment of tannery wastewater using DSA® electrodes. J. Hazard. Mater. 2008, 153, 616–627; https://doi.org/10.1016/j.jhazmat.2007.09.005. 10.1016/S1001-0742(07)60230-7 Jing-Wei, F., Ya-Bing, S., Zheng, Z., Ji-biao, Z., Shu, L., Yuan-Chun, T. Treatment of tannery wastewater by Electrocoagulation. J. Environ. Sci. 2007, 19, 1409–1415; https://doi.org/10.1016/s1001-0742(07)60230-7. 10.1016/j.jhazmat.2008.11.058 Paschoal, F. M. M., Anderson, M. A., Zanonia, M. V. B. Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. J. Hazard. Mater. 2009, 166, 531–537; https://doi.org/10.1016/j.jhazmat.2008.11.058. 10.1016/j.jhazmat.2005.02.010 Apte, A. D., Verma, S., Tare, V., Bose, P. Oxidation of Cr(III) in tannery sludge to Cr(VI): field observations and theoretical assessment. J. Hazard. Mater. 2005, 121, 215–222; https://doi.org/10.1016/j.jhazmat.2005.02.010. 10.1016/j.jhazmat.2004.07.007 Neto, A. A. D., Dantas, T. N. D. C., Moura, M. C. P. A. Evaluation and optimization of chromium removal from tannery effluent by microemulsion in the Morris extractor. J. Hazard. Mater. 2004, B114, 115–122. 10.1016/j.jhazmat.2009.07.072 Bhatti, M. S., Reddy, A. S., Thukral, A. K. Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology. J. Hazard. Mater. 2009, 172, 839–846; https://doi.org/10.1016/j.jhazmat.2009.07.072. 10.1016/j.seppur.2007.09.011 Heidmann, I., Calmano, W. Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Sep. Purif. Technol. 2008, 61, 15–21; https://doi.org/10.1016/j.seppur.2007.09.011. 10.1007/s11814-007-0034-6 Kongjao, S., Damronglerd, S., Hunsom, M. Simultaneous removal of chromium and organic pollutants in tannery wastewater by electroprecipitation technique. Kor. J. Chem. Eng. 2007, 24, 730–735; https://doi.org/10.1007/s11814-007-0034-6. 10.1016/j.seppur.2004.10.008 Gao, P., Chen, X., Shen, F., Chen, G. Removal of chromium (VI) from wastewater by combined electrocoagulation–electroflotation without a filter. Sep. Purif. Technol. 2005, 43, 117–123; https://doi.org/10.1016/j.seppur.2004.10.008. 10.1016/j.jhazmat.2008.07.144 Merzouk, B., Gourich, B., Sekki, A., Madani, K., Chibane, M. Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique A case study. J. Hazard. Mater. 2009, 164, 215–222; https://doi.org/10.1016/j.jhazmat.2008.07.144. 10.1016/j.jhazmat.2007.01.063 Mohan, N., Balasubramanian, N., Ahmed Basha, C. Electrochemical oxidation of textile wastewater and its reuse. J. Hazard. Mater. 2007, 147, 644–651; https://doi.org/10.1016/j.jhazmat.2007.01.063. 10.1007/s13762-012-0113-z Ali, I., Asim, M., Khan, T. A. Arsenite removal from water by electrocoagulation on zinc–zinc and copper–copper electrodes. Int. J. Environ. Sci. Technol. 2013, 10, 377–384; https://doi.org/10.1007/s13762-012-0113-z. 10.1007/BF03326200 Malakootian, M., Yousefi, N., Fatehizadeh, A. Survey efficiency of electrocoagulation on nitrate removal from aqueous solution. Int. J. Environ. Sci. Technol. 2011, 8, 107–114; https://doi.org/10.1007/bf03326200. 10.1007/s13762-012-0093-z Ozyonar, F., Karagozoglu, B. Systematic assessment of electrocoagulation for the treatment of marble processing wastewater. Int. J. Environ. Sci. Technol. 2012, 9, 637–646; https://doi.org/10.1007/s13762-012-0093-z. 10.1007/s13762-013-0301-5 Sridhar, R., Sivakumar, V., Prakash Maran, J., Thiruganasambandham, K. Influence of operating parameters on treatment of egg processing effluent by electrocoagulation process. Int. J. Environ. Sci. Technol. 2014, 11, 1619–1630. https://doi.org/10.1007/s13762-013-0301-5. 10.1016/j.jenvman.2005.11.012 Escobar, C., Soto-Salazar, C., Toral, M. I. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. J. Environ. Manage. 2009, 81, 384–391; https://doi.org/10.1016/j.jenvman.2005.11.012. 10.1016/j.jhazmat.2009.01.099 Ayhan, I., Engil, S., Kulac, S., Ozacar, M. Treatment of tannery liming drum wastewater by electrocoagulation. J. Hazard. Mater. 2009, 167, 940–946; https://doi.org/10.1016/j.jhazmat.2009.01.099. 10.1016/j.cej.2009.01.050 Kalyani, K. S. P., Balasubramanian, N., Srinivasakannan, C. Decolorization and COD reduction of paper industrial effluent using electro-coagulation. Chem. Eng. J. 2009, 151, 97–104; https://doi.org/10.1016/j.cej.2009.01.050. 10.1016/S0304-3894(03)00102-X Kobya, M., Can, O. T., Bayramoglu, M. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J. Hazard. Mater. 2003, 100, 163–178; https://doi.org/10.1016/s0304-3894(03)00102-x. Benefield, L. D., Judkins, J. F., Weand, B. L. Process Chemistry for Water and Wastewater Treatment; Prentice-Hall: Englewood Cliffs, NJ, 1982. 10.1021/es034427s Aravindhan, R., Madhan, B., Raghava Rao, J., Unni Nair, B., Ramasami, T. Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ. Sci. Technol. 2004, 38, 300–306; https://doi.org/10.1021/es034427s. 10.1016/j.cej.2008.09.040 ZaroualChaair, Z. H., Essadki, A. H., El Ass, K., Azzi, M. Optimizing the removal of trivalent chromium by electrocoagulation using experimental design. Chem. Eng. J. 2009, 148, 488–495; https://doi.org/10.1016/j.cej.2008.09.040. 10.2166/wst.2012.481 Ibrahim, D. S., Sakthipriya, N., Balasubramanian, N. Electrocoagulation treatment of oily wastewater with sludge analysis. Water Sci. Technol. 2012, 66, 2533–2538; https://doi.org/10.2166/wst.2012.481. 10.1016/j.cej.2009.06.038 Balasubramanian, N., Kojima, T., Srinivasakannan, C. Arsenic removal through electrocoagulation: kinetic and statistical modeling. Chem. Eng. J. 2009, 155, 76–82; https://doi.org/10.1016/j.cej.2009.06.038. 10.1016/j.jhazmat.2009.01.081 Balasubramanian, N., Kojima, T., Ahmed, C. B., Srinivasakannan, C. Removal of arsenic from aqueous solution using Electrocoagulation. J. Hazard. Mater. 2009, 167, 966–969; https://doi.org/10.1016/j.jhazmat.2009.01.081. 10.1007/s12182-013-0291-4 Ibrahim, D. S., Lathalakshmi, M., Muthukrishnaraj, A., Balasubramanian, N. An alternative treatment process for upgrade of petroleum refinery wastewater using electrocoagulation. Pet. Sci. 2013, 10, 421–430; https://doi.org/10.1007/s12182-013-0291-4. Balasubramanian, N., Srinivasakannan, C. Electrocoagulation/electroflotation: fundamentals, present and Future perspectives. In Electrolysis: Theory, Types and Application; Kuai, S., Meng, J., Eds.; Nova Science Publishers, Inc.: NY, USA, 2010; pp. 1–17. Chapter 19. 10.3390/polym13111712 Muthukrishnaraj, A., Al-Zahrani, S. A., Al Otaibi, A., Kalaivani, S. S., Manikandan, A., Balasubramanian, N., Bilgrami, A. L., Riswan Ahamed, M. A., Khan, A., Asiri, A. M., Balasubramanian, N. Enhanced photocatalytic activity of Cu2O cabbage/RGO nanocomposites under visible light irradiation. Polymers 2021, 13, 1712; https://doi.org/10.3390/polym13111712. 10.1007/s10948-020-05766-x Renuga, R., Manikandan, A., Arul Mary, J., Muthukrishnaraj, A., Khan, A., Srinivasan, S., Abdullah M Al Alwan, B., Khedher, K. M. Enhanced magneto-optical, morphological, and photocatalytic properties of nickel-substituted SnO2 nanoparticles. J. Supercond. Nov. Magnetism. 2021, 34, 825–836; https://doi.org/10.1007/s10948-020-05766-x. 10.1515/zpch-2019-1567 Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater. Z. Phys. Chem. 2020, 235, 1027–1039; https://doi.org/10.1515/zpch-2019-1567. Minas, F., Chandravanshi, B. S., Leta, S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Int. 2017, 3, 392–405.

Item Type: Article
Subjects: Chemistry > Analytical Chemistry
Divisions: Chemistry
Depositing User: Mr IR Admin
Date Deposited: 05 Oct 2024 06:25
Last Modified: 05 Oct 2024 06:25
URI: https://ir.vistas.ac.in/id/eprint/8677

Actions (login required)

View Item
View Item