Meenakshi, C. and Meyyappan, S. and Ram, A. Ganesh and Vijayakarthick, M. and Vinoth, N. and Singh, Bhopendra (2024) Classification of Lung Images of COVID-19 Patients With the Application of Deep Learning Techniques:. In: Advancements in Clinical Medicine. IGI, pp. 66-79.
Full text not available from this repository. (Request a copy)Abstract
C. Meenakshi Vels Institute of Science, Technology, Advanced Studies, India https://orcid.org/0000-0002-9020-6031 S. Meyyappan MIT Campus, Anna University, Chennai, India A. Ganesh Ram Anna University, India M. Vijayakarthick Anna University, India https://orcid.org/0000-0002-8000-3062 N. Vinoth Anna University, India Bhopendra Singh Amity University, Dubai, UAE Classification of Lung Images of COVID-19 Patients With the Application of Deep Learning Techniques
This study introduces a smart approach that uses deep learning and feature extraction from chest CT scans to detect COVID-19 quickly and accurately. Strategically integrating transfer learning with pre-trained models to improve COVID-19 diagnosis is the major innovation. Two key phases comprise the research approach. Transfer learning is first used to deep learning models using CNNs like MobileNet, DenseNet, Xception, ResNet, InceptionV3, InceptionResNetV2, VGGNet, and NASNet. PCA is used to improve feature representation and classification accuracy in these models after extensive training, testing, and validation. Kapur's entropy thresholding, morphology-based segmentation, and k-means clustering, enriched by transfer learning paradigms, are used for feature extraction. High-quality features are extracted using these methods, improving CT picture interpretability and informativeness. The results reveal that this integrative strategy improves detection accuracy, sensitivity, specificity, and performance.
  chapter 5  2024 4 26   66 79   10.4018/979-8-3693-5946-4.ch005 20240501110912 https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-5946-4.ch005   https://www.igi-global.com/viewtitle.aspx?TitleId=346191      10.1007/s00521-021-06344-5   10.1007/s10489-020-01826-w   10.1007/s10044-020-00950-0   10.2174/1573405616666200604163954   10.7717/peerj-cs.495   10.32604/cmc.2021.014134   10.1101/2020.04.24.20078584   10.1101/2020.04.24.20078584   10.1109/TENCON50793.2020.9293887 Ankan Ghosh Dastider, M. R., Subah, F., Sadik, T., & Mahmud, S. A. (2020). ResCovNet: A Deep Learning-Based Architecture For COVID-19 Detection From Chest CT Scan Images. In 2020 IEEE REGION 10 CONFERENCE (TENCON), Osaka, Japan.   10.1016/j.compbiomed.2021.104575   10.1128/CMR.00102-14   10.1128/CMR.00023-07   10.21203/rs.3.rs-65954/v2   Rapid AI development cycle for the Coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis. In arXiv O.Gozes 2020 GozesO.Frid-AdarM.GreenspanH.BrowningP. D.ZhangH.JiW.BernheimA.SiegelE. (2020). Rapid AI development cycle for the Coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis. In arXiv[cs.CV]. http://arxiv.org/abs/2003.05037   10.1088/2632-2153/abf22c   10.1101/2020.04.13.20063941   10.1016/S0140-6736(20)30183-5   10.1080/07391102.2020.1788642   10.1101/2020.02.20.20025536   10.20944/preprints201909.0139.v1   10.1056/NEJMp2000929   10.1007/s10044-021-00984-y   10.1109/TNNLS.2021.3054746   10.1016/j.irbm.2020.05.003   10.1016/j.compbiomed.2021.104835   Transfusion: Understanding transfer learning for medical imaging. In arXiv M.Raghu 2019 RaghuM.ZhangC.KleinbergJ.BengioS. (2019). Transfusion: Understanding transfer learning for medical imaging. In arXiv[cs.CV]. http://arxiv.org/abs/1902.07208   10.3390/sym12071146   10.1016/j.compbiomed.2021.104306   10.1109/RBME.2020.2987975   Automated detection and forecasting of COVID-19 using deep learning techniques: A review. In arXiv A.Shoeibi 2020 ShoeibiA.KhodatarsM.JafariM.GhassemiN.SadeghiD.MoridianP.KhademA.AlizadehsaniR.HussainS.ZareA.SaniZ. A.KhozeimehF.NahavandiS.AcharyaU. R.GorrizJ. M. (2020). Automated detection and forecasting of COVID-19 using deep learning techniques: A review. In arXiv[cs.LG]. http://arxiv.org/abs/2007.10785   10.1109/TII.2020.3048391   10.1109/ACCESS.2020.3027685   10.3390/e23020204   10.1038/s41598-020-76550-z   10.1101/2020.03.12.20027185   10.1016/j.asoc.2020.106885   10.1038/nrd.2015.37
| Item Type: | Book Section | 
|---|---|
| Subjects: | Computer Science Engineering > Deep Learning | 
| Domains: | Computer Science | 
| Depositing User: | Mr IR Admin | 
| Date Deposited: | 04 Oct 2024 05:45 | 
| Last Modified: | 04 Oct 2024 05:45 | 
| URI: | https://ir.vistas.ac.in/id/eprint/8574 | 



 Dimensions
 Dimensions Dimensions
 Dimensions