Gowthami, Pushparaj and Susi Kumar, Subramanian Rohith and Kalaiarasi, Giriraj and Kosiha, Arumugam and Priya, Lakshminarayanan Srimathi and Mahmoud, Mohamed H. and Fouad, Hassan and Ansari, Abuzar (2024) Facile synthesis of MnO 2 nanoparticles for the removal of cationic dye. Zeitschrift für Physikalische Chemie, 238 (6). pp. 1089-1102. ISSN 0942-9352
Full text not available from this repository. (Request a copy)Abstract
Facile synthesis of MnO 2 nanoparticles for the removal of cationic dye Pushparaj Gowthami PG Department of Chemistry , Shrimati Devkunvar Nanalal Bhatt Vaishnav College for Women , Chennai , India School of Basic Sciences , Vels Institute of Science, Technology & Advanced Studies (VISTAS) , Pallavaram , Chennai 600117 , Tamil Nadu , India Subramanian Rohith Susi Kumar School of Basic Sciences , Vels Institute of Science, Technology & Advanced Studies (VISTAS) , Pallavaram , Chennai 600117 , Tamil Nadu , India Giriraj Kalaiarasi Centre for Material Chemistry and Department of Chemistry , Karpagam Academy of Higher Education (Deemed to be University) , Coimbatore 641021 , Tamil Nadu , India Arumugam Kosiha School of Basic Sciences , Vels Institute of Science, Technology & Advanced Studies (VISTAS) , Pallavaram , Chennai 600117 , Tamil Nadu , India Lakshminarayanan Srimathi Priya Department of Natural Resource Management, Horticultural College and Research Institute (HC & RI) , Tamil Nadu Agricultural University (TNAU) , Periyakulam , Theni 625604 , India Mohamed H. Mahmoud Department of Biochemistry, College of Science , King Saud University , Riyadh 11451 , Saudi Arabia Hassan Fouad Applied Medical Science Department , CC , King Saud University , P. O. Box 10219 , Riyadh , Saudi Arabia Abuzar Ansari Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine , Ewha Womens University , Seoul 07984 , Republic of Korea Abstract
MnO 2 NPs were synthesized from Delonix elata leaves extract act as a capping and reducing agent by green synthesis process. The synthesized MnO 2 NPs were characterized by different spectroscopic techniques such as IR, UV-Vis, SEM and XRD analyses. The UV spectrum of synthesized MnO 2 NPs revealed optical properties at 340 nm. The XRD pattern of MnO 2 NPs exhibited the crystallite size to be in the range of 20 nm and shows the amorphous structure. The morphological geographies of MnO 2 NPs are spherical and faintly agglomerated. The FT-IR spectrum of MnO 2 NPs spectacles stretching vibration of Mn–O at 510 cm −1 confirmed the formation of MnO 2 NPs. MnO 2 is superior photo degradation for methylene blue which is extant in the textile industries and it has an unlimited potential application in wastewater treatment.
06 25 2024 02 05 2024 06 01 2024 1089 1102 10.1515/zpch-2023-0467 King Saud University http://dx.doi.org/10.13039/501100002383 RSP2024R406 10.1515/zpch-2023-0467 https://www.degruyter.com/document/doi/10.1515/zpch-2023-0467/html https://www.degruyter.com/document/doi/10.1515/zpch-2023-0467/pdf https://www.degruyter.com/document/doi/10.1515/zpch-2023-0467/xml 10.3390/chemistry4040104 Saafie, N., Zulfiqar, M., Samsudin, M. F. R., Sufian, S. Chemistry 2022, 4, 1576; https://doi.org/10.3390/chemistry4040104. 10.1016/j.envres.2022.113807 Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., Hoang, A. T., Shafiullah, G. M. Environ. Res. 2022, 214(8), 113807; https://doi.org/10.1016/j.envres.2022.113807. 10.3390/molecules26092799 Palani, G., Arputhalatha, A., Kannan, K., Lakkaboyana, S. K., Hanafiah, M. M., Kumar, V., Marella, R. K. Molecules 2021, 26, 2799; https://doi.org/10.3390/molecules26092799. 10.1016/j.envpol.2018.12.076 Wu, Y., Pang, H., Liu, Y., Wang, X., Yu, S., Fu, D., Chen, J., Wang, X. Environ. Pollut. 2019, 246, 608; https://doi.org/10.1016/j.envpol.2018.12.076. 10.1016/j.cej.2016.08.053 Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., Bhatnagar, A. Chem. Eng. J. 2016, 306, 1116; https://doi.org/10.1016/j.cej.2016.08.053. 10.1016/j.cep.2016.08.016 Bethi, B., Sonawane, S. H., Bhanvase, B. A., Gumfekar, S. P. Chem. Eng. Process. 2016, 109, 178; https://doi.org/10.1016/j.cep.2016.08.016. 10.1016/j.desal.2017.11.041 Teow, Y. H., Mohammad, A. W. Desalination 2019, 451, 2; https://doi.org/10.1016/j.desal.2017.11.041. 10.1080/10643389.2021.1877032 Gontarek-Castro, E., Castro-Muñoz, R., Lieder, M. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2104; https://doi.org/10.1080/10643389.2021.1877032. 10.1016/j.jhazmat.2011.03.120 Zhang, L., Nie, Y., Hu, C., Hu, X. J. Hazard. Mater. 2011, 190, 780; https://doi.org/10.1016/j.jhazmat.2011.03.120. 10.1016/j.jssc.2005.11.028 Yang, Z., Zhang, Y., Zhang, W., Wang, X., Qian, Y., Wen, X., Yang, S. J. Solid State Chem. 2006, 179, 679; https://doi.org/10.1016/j.jssc.2005.11.028. 10.1515/zpch-2019-1599 Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235(8), 1055–1075; https://doi.org/10.1515/zpch-2019-1599. 10.1515/zpch-2018-1238 Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233(9), 1325–1349; https://doi.org/10.1515/zpch-2018-1238. 10.1515/zpch-2023-0331 Nazir, A., Alam, S., Alwadai, N., Abbas, M., Bibi, I., Ali, A., Ahmad, N., Al Huwayz, M., Iqbal, M. Z. Phys. Chem. 2023, 237, 1733–1751; https://doi.org/10.1515/zpch-2023-0331. 10.1515/zpch-2022-0097 Majid, F., Bashir, M., Bibi, I., Ayub, M., Khan, B. S., Somaily, H. H., Al-Mijalli, S. H., Nazir, A., Iqbal, S., Iqbal, M. Z. Phys. Chem. 2023, 237, 1345–1360; https://doi.org/10.1515/zpch-2022-0097. 10.1515/zpch-2022-0113 Zartasha, I., Muhammad, I., Shoomaila, L., Arif, N., Sobhy, M. I., Iftikhar, A., Munawar, I., Shahid, I. Z. Phys. Chem. 2023, 237, 1139–1152; https://doi.org/10.1515/zpch-2022-0113. 10.1515/zpch-2022-0098 Faisal Ali, A. S., Umer, Y., Mika, S., Muhammad, P., Arif, N., Muhammad, N., Munawar, I., Abdullah, A. Al-K., Ammar Mohamed, T., Tighezza, A. M. Z. Phys. Chem. 2023, 237(2023), 599–616; https://doi.org/10.1515/zpch-2022-0098. 10.1515/zpch-2023-0224 Arif, H., Yasir, M., Ali, F., Nazir, A., Ali, A., Al Huwayz, M., Alwadai, N., Iqbal, M. Z. Phys. Chem. 2023, 237, 689–705; https://doi.org/10.1515/zpch-2023-0224. 10.1515/zpch-2022-0095 Nazir, A., Ali, M., Alwadai, N., Iqbal, M., Al Huwayz, M., Kausar, A., Arif, H., Ali, A., Ashraf, A. R. Z. Phys. Chem. 2023, 237, 923–936; https://doi.org/10.1515/zpch-2022-0095. 10.1016/j.cherd.2012.07.007 Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., Xia, L. Chem. Eng. Res. Des. 2013, 91, 361; https://doi.org/10.1016/j.cherd.2012.07.007. 10.1016/j.jhazmat.2007.04.037 Zhu, M. X., Lee, L., Wang, H. H., Wang, Z. J. Hazard. Mater. 2007, 149, 735; https://doi.org/10.1016/j.jhazmat.2007.04.037. 10.1016/j.jhazmat.2006.05.054 Sudarjanto, G., Keller-Lehmann, B., Keller, J. J. Hazard. Mater. 2006, 138, 160; https://doi.org/10.1016/j.jhazmat.2006.05.054. 10.1016/j.seppur.2006.11.008 Zaghbani, N., Hafiane, A., Dhahbi, M. Sep. Purif. Technol. 2007, 55, 117; https://doi.org/10.1016/j.seppur.2006.11.008. 10.1016/j.seppur.2014.01.020 Huang, J., Peng, L., Zeng, G., Li, X., Zhao, Y., Liu, L., Li, F., Chai, Q. Sep. Purif. Technol. 2014, 125, 83; https://doi.org/10.1016/j.seppur.2014.01.020. 10.1021/ie502367x Xu, C., Rangaiah, G. P., Zhao, X. S. Ind. Eng. Chem. Res. 2014, 53, 14641; https://doi.org/10.1021/ie502367x. 10.1007/s11356-023-26601-5 Rahmat, M., Kiran, S., Gulzar, T., Yusuf, M., Nawaz, R., Khalid, J., Fatima, N., Ullah, A., Azam, M. Environ. Sci. Pollut. Res. 2023, 30, 57587. 10.3390/catal13020397 Anguraj, G., Ashok Kumar, R., Inmozhi, C., Uthrakumar, R., Elshikh, M. S., Almutairi, S. M., Kaviyarasu, K. Catalysts 2023, 13, 397; https://doi.org/10.3390/catal13020397. 10.1021/ja310286h Robinson, D. M., Go, Y. B., Mui, M., Gardner, G., Zhang, Z., Mastrogiovanni, D., Garfunkel, E., Li, J., Greenblatt, M., Dismukes, G. C. J. Am. Chem. Soc. 2013, 135, 3494; https://doi.org/10.1021/ja310286h. 10.2166/wst.2009.758 Chakrabarti, S., Dutta, B. K., Apak, R. Water Sci. Technol. 2009, 60, 3017; https://doi.org/10.2166/wst.2009.758. 10.1016/j.chemosphere.2016.02.028 Liao, X., Zhang, C., Liu, Y., Luo, Y., Wu, S., Yuan, S., Zhu, Z. Chemosphere 2016, 150, 90; https://doi.org/10.1016/j.chemosphere.2016.02.028. 10.1007/s13201-017-0637-y Shaban, M., Abukhadra, M. R., Ibrahim, S. S., Shahien, M. Applied Water Science 2017, 7, 4743; https://doi.org/10.1007/s13201-017-0637-y. 10.1016/j.catcom.2005.12.008 Zhang, W., Yang, Z., Wang, X., Zhang, Y., Wen, X., Yang, S. Catal. Commun. 2006, 7, 408; https://doi.org/10.1016/j.catcom.2005.12.008. 10.1016/j.cej.2006.01.016 Dantas, T. L. P., Mendonca, V. P., Jose, H. J., Rodrigues, A. E., Moreira, R. F. P. M. Chem. Eng. J. 2006, 118, 77; https://doi.org/10.1016/j.cej.2006.01.016. 10.1016/j.apcatb.2007.05.031 Han, Y. F., Chen, F., Ramesh, K., Zhong, Z., Widjaja, E., Chen, L. Appl. Catal. B. 2007, 76, 227; https://doi.org/10.1016/j.apcatb.2007.05.031. 10.1002/9783527609987 Ahmad, I., Aqil, F., Owais, M. Modern Phytomedicine: Turning Medicinal Plants into Drugs; John Wiley & Sons: Manhattan, USA, 2006. Ramellini, G., Meldolesi, J. Arzneim. Forsch. 1976, 26, 69. Phani Kumar, K., Shyam Prasad, K., Lakshmi Sudeepthi, N., Ravi Chandra, S. R. D., Abdul Rahaman, S., Madan Ranjith, P. IJPT 2014, 2, 70. 10.1007/s00289-018-2355-5 Roy, H. S., Mollah, M. Y. A., Islam, M. M., Susan, M. A. B. H. Polym. Bull. 2018, 75, 5629; https://doi.org/10.1007/s00289-018-2355-5. 10.1039/C4CY00463A Kouotou, P. M., Vieker, H., Tian, Z. Y., Ngamou, P. T., El Kasmi, A., Beyer, A., Gölzhäuser, A., Kohse-Höinghaus, K. Catal. Sci. Technol. 2014, 4, 3359; https://doi.org/10.1039/c4cy00463a. 10.1016/j.molliq.2022.118910 Al-Thubaiti, K. S., Khan, Z., Al-Thabaiti, S. A. J. Mol. Liq. 2022, 355, 118910. 10.1107/S0567739476001551 Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751; https://doi.org/10.1107/s0567739476001551. 10.1515/gps-2019-0040 Buazar, F., Sweidi, S., Badri, M., Kroushawi, F. Green Process. Synth. 2019, 8, 691; https://doi.org/10.1515/gps-2019-0040. 10.1002/pssc.200672164 Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., Williams, R. T. Phys. Status Solidi C 2006, 3, 3577; https://doi.org/10.1002/pssc.200672164. 10.1039/C4RA09655J Marsh, B. M., Zhou, J., Garand, E. RSC Adv. 2015, 5, 1790; https://doi.org/10.1039/c4ra09655j. 10.1088/2053-1591/ab6c20 Ullah, A. A., Haque, M. M., Akter, M., Hossain, A., Tamanna, A. N., Hosen, M. M., Kibria, A. F., Khan, M. N. I., Khan, K. A. Mater. Res. Express 2020, 7, 015088; https://doi.org/10.1088/2053-1591/ab6c20. 10.1088/0957-4484/18/11/115616 Wang, H., Lu, Z., Qian, D., Li, Y., Zhang, W. Nanotechnology 2007, 18, 115616; https://doi.org/10.1088/0957-4484/18/11/115616. 10.1016/j.mssp.2014.12.023 Suresh, D., Nethravathi, P. C., Rajanaika, H., Nagabhushana, H., Sharma, S. C. Mater. Sci. Semicond. Process. 2015, 31, 446; https://doi.org/10.1016/j.mssp.2014.12.023. 10.1021/jp8052967 Luo, J., Zhu, H. T., Fan, H. M., Liang, J. K., Shi, H. L., Rao, G. H., Li, J. B., Du, Z. M., Shen, Z. X.. J. Phys. Chem. C 2008, 112, 12594; https://doi.org/10.1021/jp8052967. 10.3389/fchem.2021.752276 Jamjoum, H. A. A., Umar, K., Adnan, R., Razali, M. R., Mohamad Ibrahim, M. N. Front. Chem. 2021, 9, 752276; https://doi.org/10.3389/fchem.2021.752276. 10.1166/nnl.2016.2150 Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Arul Antony, S. Nanosci. Nanotechnol. Lett. 2016, 8, 438–443; https://doi.org/10.1166/nnl.2016.2150. 10.1016/j.ceramint.2019.06.093 Senthil, R. A., Osman, S., Pan, J., Sun, Y., Kumar, T. R., Manikandan, A. Ceram. Int. 2019, 45, 18683–18690; https://doi.org/10.1016/j.ceramint.2019.06.093. 10.1166/asem.2015.1750 Jayasree, S., Manikandan, A., Mohideen, A. M., Barathiraja, C., Antony, S. A. Adv. Sci. Engin. Med. 2015, 7, 672–682; https://doi.org/10.1166/asem.2015.1750. 10.1016/j.colsurfa.2019.124079 Senthil, R. A., Osman, S., Pan, J., Khan, A., Yang, V., Kumar, T. R., Sun, Y., Lin, Y., Liu, X., Manikandan, A. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 586, 124079; https://doi.org/10.1016/j.colsurfa.2019.124079. 10.1166/nnl.2016.2149 Mathubala, G., Manikandan, A., Arul Antony, S., Ramar, P. Nanosci. Nanotech. Lett. 2016, 8, 375–381; https://doi.org/10.1166/nnl.2016.2149. 10.1166/asem.2015.1753 Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. Adv. Sci. Engin. Med. 2015, 7, 722–727; https://doi.org/10.1166/asem.2015.1753. 10.1007/s10904-017-0512-1 Shameem, A., Devendran, P., Siva, V., Raja, M., Bahadur, S. A., Manikandan, A. J. Inorg. Organometal. Polym. Mater. 2017, 27, 692–699; https://doi.org/10.1007/s10904-017-0512-1. 10.1007/s10948-015-3089-3 Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. J. Supercond. Nov. Magn. 2015, 28, 2755–2766; https://doi.org/10.1007/s10948-015-3089-3. 10.1016/S1003-6326(17)60201-2 Umapathy, V., Neeraja, P., Manikandan, A., Ramu, P. Trans. Nonf. Met. Soc. China 2017, 27, 1785–1793; https://doi.org/10.1016/s1003-6326(17)60201-2. 10.1166/jnn.2018.14669 Silambarasu, A., Manikandan, A., Balakrishnan, K., Jaganathan, S. K., Manikandan, E., Aanand, J. S. J. Nanosci. Nanotechnol. 2018, 18, 3523–3531; https://doi.org/10.1166/jnn.2018.14669.
Item Type: | Article |
---|---|
Subjects: | Chemistry > Polymer Chemistry |
Divisions: | Chemistry |
Depositing User: | Mr IR Admin |
Date Deposited: | 03 Oct 2024 07:16 |
Last Modified: | 03 Oct 2024 07:16 |
URI: | https://ir.vistas.ac.in/id/eprint/8435 |