Venkataraman, Sowmyalakshmi and Narayan, Shoba and Chadha, Anju (2016) Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies. Scientific Reports, 6 (1). ISSN 2045-2322
![[thumbnail of srep34344.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
srep34344.pdf
Download (1MB)
Abstract
Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies Sowmyalakshmi Venkataraman Shoba Narayan Anju Chadha Abstract
Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC.
10 14 2016 34344 BFsrep34344 1 10.1007/springer_crossmark_policy link.springer.com false 19 May 2016 13 September 2016 14 October 2016 The authors declare no competing financial interests. https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 10.1038/srep34344 20230105065742041 https://www.nature.com/articles/srep34344 https://www.nature.com/articles/srep34344.pdf https://www.nature.com/articles/srep34344.pdf https://www.nature.com/articles/srep34344 J. Ind. Microbiol. Biotechnol. T Kaliaperumal 37 159 2010 10.1007/s10295-009-0657-1 Kaliaperumal, T., Kumar, S., Gummadi, S. & Chadha, A. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxybutanoate using Candida parapsilosis ATCC 7330. J. Ind. Microbiol. Biotechnol. 37, 159–165 (2010). Tetrahedron: Asymmetry P Mahajabeen 22 2156 2011 10.1016/j.tetasy.2011.12.008 Mahajabeen, P. & Chadha, A. One-pot synthesis of enantiomerically pure 1,2-diols: Asymmetric reduction of aromatic α-oxo aldehydes catalyzed by Candida parapsilosis ATCC 7330. Tetrahedron: Asymmetry 22, 2156–2160 (2011). Appl. Biochem. Biotechnol. S Venkataraman 171 756 2013 10.1007/s12010-013-0379-8 Venkataraman, S., Roy, R. K. & Chadha, A. Asymmetric reduction of alkyl-3-oxobutanoates by Candida parapsilosis ATCC 7330: Insights into solvent and substrate optimisation of the biocatalytic reaction. Appl. Biochem. Biotechnol. 171, 756–770 (2013). Tetrahedron B Baskar 61 12296 2005 10.1016/j.tet.2005.09.104 Baskar, B., Pandian, N. G., Priya, K. & Chadha, A. Deracemisation of aryl substituted α-hydroxy esters using Candida parapsilosis ATCC 7330: Effect of substrate structure and mechanism. Tetrahedron 61, 12296–12306 (2005). Tetrahedron: Asymmetry SK Padhi 16 2790 2005 10.1016/j.tetasy.2005.07.017 Padhi, S. K. & Chadha, A. Deracemisation of aromatic β-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330 and determination of absolute configuration by 1H NMR. Tetrahedron: Asymmetry 16, 2790–2798 (2005). Tetrahedron: Asymmetry T Saravanan 21 2973 2010 10.1016/j.tetasy.2010.11.021 Saravanan, T. & Chadha, A. Biocatalytic deracemization of alkyl-2-hydroxy-4-arylbut-3-ynoates using whole cells of Candida parapsilosis ATCC 7330. Tetrahedron: Asymmetry 21, 2973–2980 (2010). RSC Adv. T Sivakumari 4 60526 2014 10.1039/C4RA08146C Sivakumari, T. & Chadha, A. Regio- and enantio-selective oxidation of diols by Candida parapsilosis ATCC 7330. RSC Adv. 4, 60526–60533 (2014). Cooper, G. M. & Hausman, R. E. The Cell: A Molecular Approach. (ASM Press, 2009). FEBS J. J-E Sarry 274 4287 2007 10.1111/j.1742-4658.2007.05959.x Sarry, J.-E. et al. Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae . FEBS J. 274, 4287–4305 (2007). Acetic Acid Bact. S Gomez-Manzo 2 e2 2013 10.4081/aab.2013.s1.e2 Gomez-Manzo, S., Del Arenal-Mena, I. P. & Escamilla, E. The inactive and active forms of the pyrroloquinoline quinone-alcohol dehydrogenase of Gluconacetobacter diazotrophicus: A comparative study. Acetic Acid Bact. 2, e2 (2013). Jpn. J. Pharmacol. N Inazu 54 13 1990 10.1254/jjp.54.13 Inazu, N., Inaba, N. & Satoh, T. Immunohistochemical localization and physiological regulation of carbonyl reductase in immature rat ovary. Jpn. J. Pharmacol. 54, 13–21 (1990). J. Histochem. Cytochem. H Wirth 40 1857 1992 10.1177/40.12.1453004 Wirth, H. & Wermuth, B. Immunohistochemical localization of carbonyl reductase in human tissues. J. Histochem. Cytochem. 40, 1857–1863 (1992). Appl. Environ. Microbiol. TA Fassel 58 2302 1992 10.1128/aem.58.7.2302-2307.1992 Fassel, T. A., Buchholz, L. A., Collins, M. L. & Remsen, C. C. Localization of methanol dehydrogenase in two strains of methylotrophic bacteria detected by immunogold labeling. Appl. Environ. Microbiol. 58, 2302–2307 (1992). J. Biochem. N Iwata 107 209 1990 10.1093/oxfordjournals.jbchem.a123027 Iwata, N., Inazu, N. & Satoh, T. Immunological and enzymological localization of carbonyl reductase in ovary and liver of various species. J. Biochem. 107, 209–212 (1990). Anal. Biochem. AB Nikiforova 440 189 2013 10.1016/j.ab.2013.05.029 Nikiforova, A. B., Fadeev, R. S. & Kruglov, A. G. Rapid fluorescent visualization of multiple NAD(P)H oxidoreductases in homogenate, permeabilized cells, and tissue slices. Anal. Biochem. 440, 189–196 (2013). EMBO J. AP van Loon 5 161 1986 10.1002/j.1460-2075.1986.tb04191.x van Loon, A. P. & Young, E. T. Intracellular sorting of alcohol dehydrogenase isoenzymes in yeast: a cytosolic location reflects absence of an amino-terminal targeting sequence for the mitochondrion. EMBO J. 5, 161–165 (1986). Biochim. Biophy. Acta HMC Heick 191 493 1969 10.1016/0005-2744(69)90342-8 Heick, H. M. C., Willemot, J. & Begin-Heick, N. The subcellular localization of alcohol dehydrogenase activity in baker’s yeast. Biochim. Biophy. Acta 191, 493–501 (1969). FEMS Yeast Res. O De Smidt 8 967 2008 10.1111/j.1567-1364.2008.00387.x De Smidt, O., Du Preez, J. C. & Albertyn, J. The alcohol dehydrogenases of Saccharomyces cerevisiae: A comprehensive review. FEMS Yeast Res. 8, 967–978 (2008). Biochem. J C Larroy 361 163 2002 10.1042/bj3610163 Larroy, C., Fernández, M. R., González, E., Parés, X. & Biosca, J. A. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: Relevance in aldehyde reduction. Biochem. J 361, 163–172 (2002). Eur. J. Biochem. C Larroy 269 5738 2002 10.1046/j.1432-1033.2002.03296.x Larroy, C., Parés, X. & Biosca, J. A. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur. J. Biochem. 269, 5738–5745 (2002). Bioorg. Med. Chem. Lett. G Klein 8 1113 1998 10.1016/S0960-894X(98)00165-6 Klein, G. & Reymond, J.-L. An enantioselective fluorimetric assay for alcohol dehydrogenases using albumin-catalyzed β-elimination of umbelliferone. Bioorg. Med. Chem. Lett. 8, 1113–1116 (1998). Biotechnol. Lett. S Trivić 24 807 2002 10.1023/A:1015588524267 Trivić, S., Leskovac, V., Peričin, D. & Winston, G. A novel substrate for yeast alcohol dehydrogenase – p-nitroso-N,N-dimethylaniline. Biotechnol. Lett. 24, 807–811 (2002). Clin. Chim. Acta L Chrostek 263 117 1997 10.1016/S0009-8981(97)00056-9 Chrostek, L. & Szmitkowski, M. Activity of class I and II isoenzymes of alcohol dehydrogenase measured by a fluorometric method in the sera of patients with obstructive jaundice. Clin. Chim. Acta 263, 117–122 (1997). Exp. Mol. Pathol. W Jelski 87 59 2009 10.1016/j.yexmp.2009.03.001 Jelski, W. et al. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the wall of abdominal aortic aneurysms. Exp. Mol. Pathol. 87, 59–62 (2009). Clin. Biochem. K Orywal 44 1231 2011 10.1016/j.clinbiochem.2011.07.004 Orywal, K., Jelski, W., Zdrodowski, M. & Szmitkowski, M. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in cervical cancer. Clin. Biochem. 44, 1231–1234 (2011). J. Fluorine Chem. S Venkataraman 169 66 2015 10.1016/j.jfluchem.2014.11.004 Venkataraman, S. & Chadha, A. Preparation of enantiomerically enriched (S)-ethyl 3-hydroxy 4,4,4-trifluorobutanoate using whole cells of Candida parapsilosis ATCC 7330. J. Fluorine Chem. 169, 66–71 (2015). Tetrahedron: Asymmetry B Baskar 15 3961 2004 10.1016/j.tetasy.2004.11.002 Baskar, B., Pandian, N. G., Priya, K. & Chadha, A. Asymmetric reduction of alkyl 2-oxo-4-arylbutanoates and -but-3-enoates by Candida parapsilosis ATCC 7330: Assignment of the absolute configuration of ethyl 2-hydroxy-4-(p-methylphenyl)but-3-enoate by 1H NMR. Tetrahedron: Asymmetry 15, 3961–3966 (2004). Tetrahedron: Asymmetry A Chadha 13 1461 2002 10.1016/S0957-4166(02)00403-2 Chadha, A. & Baskar, B. Biocatalytic deracemization of α-hydroxy esters: high yield preparation of (S)-ethyl 2-hydroxy-4-phenylbutanoate from the racemate. Tetrahedron: Asymmetry 13, 1461–1464 (2002). Biocatal. Biotransform. T Kaliaperumal 29 262 2011 10.3109/10242422.2011.615925 Kaliaperumal, T., Gummadi, S. N. & Chadha, A. Candida parapsilosis ATCC 7330 can also deracemise 1-arylethanols. Biocatal. Biotransform. 29, 262–270 (2011). J. Ind. Microbiol. Biotechnol. S Venkataraman 42 173 2015 10.1007/s10295-014-1558-5 Venkataraman, S. & Chadha, A. Biocatalytic deracemization of aliphatic β-hydroxy esters: Improving the enantioselectivity by optimization of reaction parameters. J. Ind. Microbiol. Biotechnol. 42, 173–180 (2015). Proc. Natl. Acad. Sci. USA AE Smith 97 9871 2000 10.1073/pnas.97.18.9871 Smith, A. E., Zhang, Z., Thomas, C. R., Moxham, K. E. & Middelberg, A. P. J. The mechanical properties of Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 97, 9871–9874 (2000). Tetrahedron: Asymmetry CV Voss 18 276 2007 10.1016/j.tetasy.2007.01.013 Voss, C. V., Gruber, C. C. & Kroutil, W. A biocatalytic one-pot oxidation/reduction sequence for the deracemisation of a sec-alcohol. Tetrahedron: Asymmetry 18, 276–281 (2007). Candida parapsilosis ATCC 7330. Tetrahedron: Asymmetry T Kaliaperumal 22 1548 2011 Kaliaperumal, T., Gummadi, S. N. & Chadha, A. Synthesis of both enantiomers of ethyl-4-chloro-3-hydroxbutanoate from a prochiral ketone using Candida parapsilosis ATCC 7330. Tetrahedron: Asymmetry 22, 1548–1552 (2011). RSC Adv. T Sivakumari 4 2257 2014 10.1039/C3RA46206D Sivakumari, T., Preetha, R. & Chadha, A. Enantioselective oxidation of secondary alcohols by Candida parapsilosis ATCC 7330. RSC Adv. 4, 2257–2262 (2014). RSC Adv. S Venkataraman 5 73807 2015 10.1039/C5RA13593A Venkataraman, S. & Chadha, A. Enantio- & chemo-selective preparation of enantiomerically enriched aliphatic nitro alcohols using Candida parapsilosis ATCC 7330. RSC Adv. 5, 73807–73813 (2015). J. Am. Chem. Soc. DJ Yee 126 2282 2004 10.1021/ja039799f Yee, D. J., Balsanek, V. & Sames, D. New tools for molecular imaging of redox metabolism: Development of a fluorogenic probe for 3α-hydroxysteroid dehydrogenases. J. Am. Chem. Soc. 126, 2282–2283 (2004). Angew. Chem. Int. Ed. Engl. W Rettig 25 971 1986 10.1002/anie.198609711 Rettig, W. Charge separation in excited states of decoupled Systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew. Chem. Int. Ed. Engl. 25, 971–988 (1986). Org. Biomol. Chem. T Saravanan 12 4682 2014 10.1039/c4ob00615a Saravanan, T., Jana, S. & Chadha, A. Utilization of whole cell mediated deracemization in a chemoenzymatic synthesis of enantiomerically enriched polycyclic chromeno[4,3-b] pyrrolidines. Org. Biomol. Chem. 12, 4682–4690 (2014). RSC Adv. T Sivakumari 5 91594 2015 10.1039/C5RA18532G Sivakumari, T. & Chadha, A. Candida parapsilosis ATCC 7330 mediated oxidation of aromatic (activated) primary alcohols to aldehydes. RSC Adv. 5, 91594–91600 (2015). Feldmann, H. In Yeast: Molecular and Cell Biology 5–24 (Wiley-VCH Verlag GmbH & Co. KGaA, 2012). Hardiman, C. Searching for the source: Determining NAD+ concentrations in the yeast vacuole. Penn McNair Res. J 1, 2 (1–16) (2007). Eur. J. Biochem. A Hasilik 48 111 1974 10.1111/j.1432-1033.1974.tb03748.x Hasilik, A., MÜLler, H. & Holzer, H. Compartmentation of the tryptophan-synthase-proteolyzing system in Saccharomyces cerevisiae . Eur. J. Biochem. 48, 111–117 (1974). BBA-Mol. Cell Res. SC Li 1793 650 2009 Li, S. C. & Kane, P. M. The yeast lysosome-like vacuole: Endpoint and crossroads. BBA-Mol. Cell Res. 1793, 650–663 (2009). Synlett SK Padhi 2003 0639 2003 Padhi, S. K. & Chadha, A. Sodium borohydride reduction and selective transesterification of β-keto esters in a one-pot reaction under mild conditions. Synlett 2003, 0639–0642 (2003). Chem. Eur. J T Inagaki 16 3090 2010 10.1002/chem.200903118 Inagaki, T., Phong, L. T., Furuta, A., Ito, J.-i. & Nishiyama, H. Iron- and Cobalt-catalyzed asymmetric hydrosilylation of ketones and enones with bis(oxazolinylphenyl)amine ligands. Chem. Eur. J 16, 3090–3096 (2010). Gaeikwad, S. S. In search of inhibitors for Candida parapsilosis ATCC 7330: Studies on some heterocyclic compounds, M. Sc. Thesis, Pune University, (2014). Bioorg. Med. Chem. N Matsunaga 12 4313 2004 10.1016/j.bmc.2004.06.016 Matsunaga, N. et al. C17,20-lyase inhibitors. Part 2: Design, synthesis and structure–activity relationships of (2-naphthylmethyl)-1H-imidazoles as novel C17,20-lyase inhibitors. Bioorg. Med. Chem. 12, 4313–4336 (2004).
Item Type: | Article |
---|---|
Subjects: | Biochemistry > Biology |
Divisions: | Biochemistry |
Depositing User: | Mr IR Admin |
Date Deposited: | 02 Oct 2024 07:48 |
Last Modified: | 02 Oct 2024 07:48 |
URI: | https://ir.vistas.ac.in/id/eprint/7960 |