Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst

Krishna, Vemula Mohana and Somanathan, T. and Manikandan, E. and Umar, Ahmad and Maaza, M. (2018) Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst. Applied Nanoscience, 8 (1-2). pp. 105-113. ISSN 2190-5509

[thumbnail of Appl.Nanocience_CNTs-018.pdf] Archive
Appl.Nanocience_CNTs-018.pdf

Download (2MB)

Abstract

Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst Vemula Mohana Krishna T. Somanathan E. Manikandan Ahmad Umar M. Maaza Abstract

Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.
02 05 2018 02 2018 105 113 667 1 10.1007/springer_crossmark_policy link.springer.com false 13 September 2017 11 November 2017 5 February 2018 https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ 10.1007/s13204-018-0667-2 20210902132345197 https://link.springer.com/10.1007/s13204-018-0667-2 https://link.springer.com/content/pdf/10.1007/s13204-018-0667-2.pdf https://link.springer.com/article/10.1007/s13204-018-0667-2/fulltext.html https://link.springer.com/content/pdf/10.1007/s13204-018-0667-2.pdf Phys Rev Lett K Akagi 74 2307 1995 10.1103/PhysRevLett.74.2307 Akagi K, Tamura R, Tsukada M (1995) Electronic structure of helically coiled cage of graphitic carbon. Phys Rev Lett 74:2307–2310 Science A Amelinck 265 635 1994 10.1126/science.265.5172.635 Amelinck A, Zhang XB, Bernaerts D, Zhang XF et al (1994) A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265:635–639 Ind Eng Chem Res J Balamurugan 52 384 2013 10.1021/ie3021973 Balamurugan J, Pandurangan A, Thangamuthu R, Senthilkumar SM (2013) Effective synthesis of well-graphitized carbon nanotubes on bimetallic sba-15 template for use as counter electrode in dye-sensitized solar cells. Ind Eng Chem Res 52:384–393 J Phys Condens Matter O Cespedes 16 L155 2004 10.1088/0953-8984/16/10/L06 Cespedes O, Ferreira MS, Sanvito S, Kociak M, Coey JMD (2004) Contact induced magnetism in carbon nanotubes. J Phys Condens Matter 16:L155 Nano Lett X Chen 3 1299 2003 10.1021/nl034367o Chen X, Zhang S, Dikin DA, Ding W, Ruoff RS, Pan L, Nakayama Y (2003) Mechanics of a carbon nanocoil. Nano Lett 3:1299–1304 Carbon J Cherusseri 105 113 2016 10.1016/j.carbon.2016.04.019 Cherusseri J, Sharma R, Kar KK (2016) Helically coiled carbon nanotube electrodes for flexible supercapacitors. Carbon 105:113–125 Sci Rep C Choi 5 1 2015 Choi C, Kim SH, Sim HJ et al (2015) Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci Rep 5:1–6 Phys Rev B AL Friedman 81 115461 2010 10.1103/PhysRevB.81.115461 Friedman AL, Chun H, Jung YJ et al (2010) Possible room-temperature ferromagnetism in hydrogenated carbon nanotubes. Phys Rev B 81:115461–115464 Mater Res Express JA Garcia-Merino 4 035601 2017 10.1088/2053-1591/aa5ec6 Garcia-Merino JA et al (2017) Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids. Mater Res Express 4:035601 J Nanosci Nanotechnol MJ Hanus 10 2261 2010 10.1166/jnn.2010.1912 Hanus MJ, Harris AT (2010) Synthesis, characterisation and applications of coiled carbon nanotubes. J Nanosci Nanotechnol 10:2261–2283 Nature S Iijima 354 56 1991 10.1038/354056a0 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Diamond Relat Mater J Kennedy 71 79 2017 10.1016/j.diamond.2016.12.007 Kennedy J, Fang F, Manikandan E et al (2017) Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diamond Relat Mater 71:79–84 Mater Des N Khani 109 123 2016 10.1016/j.matdes.2016.06.126 Khani N, Yildiz M, Koc B (2016) Elastic properties of coiled carbon nanotube reinforced nanocomposite: a finite element study. Mater Des 109:123–132 Compos B KT Lau 37 437 2006 10.1016/j.compositesb.2006.02.008 Lau KT, Lu M, Hui D (2006) Coiled carbon nanotubes: synthesis and their potential applications in advanced composite structures. Compos B 37:437–448 Carbon SH Lee 100 647 2016 10.1016/j.carbon.2016.01.034 Lee SH, Park J, Kim HR et al (2016) Synthesis of carbon nanotube fibers using the direct spinning process based on design of experiment (DOE). Carbon 100:647–655 Nanotechnology M Li 27 505706 2016 10.1088/0957-4484/27/50/505706 Li M, Li N, Shao W, Zhou C (2016) Synthesis of carbon nanofibers by CVD as a catalyst support material using atomically ordered Ni3C nanoparticles. Nanotechnology 27:505706–505714 Nano Res L Liu 7 626 2014 10.1007/s12274-014-0431-1 Liu L, Liu F, Zhao J (2014) Curved carbon nanotubes: from unique geometries to novel properties and peculiar applications. Nano Res 7:626–657 Phys Rev Lett JP Lu 74 1123 1995 10.1103/PhysRevLett.74.1123 Lu JP (1995) Novel magnetic properties of carbon nanotubes. Phys Rev Lett 74:1123–1126 In J Heat Mass Transfer D Ma 108 940 2017 10.1016/j.ijheatmasstransfer.2016.12.092 Ma D, Ding H, Wang X, Yang N, Zhang X (2017) The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. In J Heat Mass Transfer 108:940–944 J Alloys Compd E Manikandan 647 141 2015 10.1016/j.jallcom.2015.06.102 Manikandan E, Kennedy J, Kavitha G et al (2015) Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J Alloys Compd 647:141–145 Chem Sci K Matsui 4 84 2013 10.1039/C2SC21322B Matsui K, Segawa Y, Namikawa T, Kamada K, Itami K (2013) Synthesis and properties of all-benzene carbon nanocages: a junction unit of branched carbon nanotubes. Chem Sci 4:84–88 Bull Mater Sci V Mohana Krishna 39 1079 2016 10.1007/s12034-016-1221-z Mohana Krishna V, Somanathan T (2016) Efficient strategy to Cu/Si catalyst into vertically aligned carbon nanotubes with bamboo shape by CVD technique. Bull Mater Sci 39:1079–1084 Diamond Relat Mater V Mohana Krishna 50 20 2014 10.1016/j.diamond.2014.08.014 Mohana Krishna V, Abilarasu A, Somanathan T, Gokulakrishnan N (2014) Effective synthesis of well graphitized high yield bamboo-like multi-walled carbon nanotubes on copper loaded α-alumina nanoparticles. Diamond Relat Mater 50:20–25 J Appl Phy DE Motaung 107 044308 2010 10.1063/1.3311563 Motaung DE, Moodley MK, Manikandan E, Coville NJ (2010) In situ optical emission study on the role of C2 in the synthesis of single-walled carbon nanotubes. J Appl Phy 107:044308–044323 Appl Phys Lett S Motojima 62 2322 1993 10.1063/1.109634 Motojima S, Hasegawa I, Kagiya S et al (1993) Preparation of coiled carbon fibers by pyrolysis of acetylene using a Ni catalyst and sulfur or phosphorus compound impurity. Appl Phys Lett 62:2322–2323 Chem Rev P Munnik 115 6687 2015 10.1021/cr500486u Munnik P, De Jongh PE, De Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev 115:6687–6718 Carbon L Ni 44 2265 2006 10.1016/j.carbon.2006.02.031 Ni L, Kuroda K, Nakamura J (2006) Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon 44:2265–2272 Polymer SH Park 54 1318 2013 10.1016/j.polymer.2012.12.048 Park SH, Yun DJ, Theilmann P, Bandaru PR (2013) Superior electrical and mechanical characteristics observed through the incorporation of coiled carbon nanotubes in comparison to non-coiled forms in polymers. Polymer 54:1318–1322 J Nan Chem M Raghasudha 3 1 2013 Raghasudha M, Ravinder D, Veerasomaiah P (2013) Magnetic properties of Cr-substituted Co-ferrite nanoparticles synthesized by citrate-gel autocombustion method. J Nan Chem 3:1–6 J Ind Eng Chem H Raghubanshi 44 23 2016 10.1016/j.jiec.2016.08.023 Raghubanshi H, Dikio ED, Naidoo EB (2016) The properties and applications of helical carbon fibers and related materials: a review. J Ind Eng Chem 44:23–42 Chem Phys Lett K Sai Krishna 433 327 2007 10.1016/j.cplett.2006.11.068 Sai Krishna K, Eswaramoorthy M (2007) Novel synthesis of carbon nanorings and their characterization. Chem Phys Lett 433:327–330 Angew Chem Y Segawa 55 5136 2016 10.1002/anie.201508384 Segawa Y, Yagi A, Matsui K, Itami K (2016) Design and synthesis of carbon nanotube segments. Angew Chem 55:5136–5158 Ind Eng Chem Res T Somanathan 45 8926 2006 10.1021/ie060663a Somanathan T, Pandurangan A (2006) Effective synthesis of single-walled carbon nanotubes using Ni—MCM-41 catalytic template through chemical vapor deposition method. Ind Eng Chem Res 45:8926–8931 J Porous Mater T Somanathan 16 657 2009 10.1007/s10934-008-9246-3 Somanathan T, Pandurangan A (2009) Direct synthesis of vanadium substituted mesoporous MCM-41 molecular sieves: a systematic study for the growth of SWNTs. J Porous Mater 16:657–665 ACS Nano N Tang 4 241 2010 10.1021/nn901425r Tang N et al (2010) Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties. ACS Nano 4:241–250 Nano Lett A Volodin 4 1775 2004 10.1021/nl0491576 Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy JB, Haesendonck CV (2004) Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett 4:1775–1779 J Mater Chem A P Wang 4 15450 2016 10.1039/C6TA06971A Wang P, Xiao P, Zhong S, Chen J, Lin H, Wu XL (2016) Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. J Mater Chem A 4:15450–15456 AIP Adv MM Zaeria 5 117114 2015 10.1063/1.4935564 Zaeria MM, Rad SZ (2015) Elastic behaviour of carbon nanocoils: a molecular dynamics study. AIP Adv 5:117114–117120 J Mater Sci J Zhao 47 6535 2012 10.1007/s10853-012-6583-z Zhao J, Zhang J, Su Y et al (2012) Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties. J Mater Sci 47:6535–6541

Item Type: Article
Subjects: Biotechnology > Nanotechnology
Divisions: Biotechnology
Depositing User: Mr IR Admin
Date Deposited: 02 Oct 2024 07:16
Last Modified: 02 Oct 2024 07:16
URI: https://ir.vistas.ac.in/id/eprint/7921

Actions (login required)

View Item
View Item