Kandoi, Sangeetha and L, Praveen kumar and Patra, Bamadeb and Vidyasekar, Prasanna and Sivanesan, Divya and S., Vijayalakshmi and K., Rajagopal and Verma, Rama Shanker (2018) Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Scientific Reports, 8 (1). ISSN 2045-2322
![[thumbnail of Evaluation_of_platelet_lysate_as_a_substitute_for_.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
Evaluation_of_platelet_lysate_as_a_substitute_for_.pdf
Download (4MB)
Abstract
Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs Sangeetha Kandoi Praveen kumar L Bamadeb Patra Prasanna Vidyasekar Divya Sivanesan Vijayalakshmi S. Rajagopal K. Rama Shanker Verma Abstract
Mesenchymal stem cells (MSCs) have immense potential for cell-based therapy of acute and chronic pathological conditions. MSC transplantation for cell-based therapy requires a substantial number of cells in the range of 0.5–2.5 × 10 6 cells/kg body weight of an individual. A prolific source of MSCs followed by in vitro propagation is therefore an absolute prerequisite for clinical applications. Umbilical cord tissue (UCT) is an abundantly available prolific source of MSC that are fetal in nature and have higher potential for ex-vivo expansion. However, the ex-vivo expansion of MSCs using a xenogeneic supplement such as fetal bovine serum (FBS) carries the risk of transmission of zoonotic infections and immunological reactions. We used platelet lysate (PL) as a xeno-free, allogeneic replacement for FBS and compared the biological and functional characteristics of MSC processed and expanded with PL and FBS by explant and enzymatic method. UCT-MSCs expanded using PL displayed typical immunophenotype, plasticity, immunomodulatory property and chromosomal stability. PL supplementation also showed 2-fold increase in MSC yield from explant culture with improved immunomodulatory activity as compared to enzymatically dissociated cultures. In conclusion, PL from expired platelets is a viable alternative to FBS for generating clinically relevant numbers of MSC from explant cultures over enzymatic method.
08 20 2018 12439 30772 1 10.1007/springer_crossmark_policy link.springer.com false 16 April 2018 24 July 2018 20 August 2018 The authors declare no competing interests. https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 10.1038/s41598-018-30772-4 20221221092122465 https://www.nature.com/articles/s41598-018-30772-4 https://www.nature.com/articles/s41598-018-30772-4.pdf https://www.nature.com/articles/s41598-018-30772-4.pdf https://www.nature.com/articles/s41598-018-30772-4 Stem cells international H Tao 2016 1314709 2016 10.1155/2016/1314709 Tao, H., Han, Z., Han, Z. C. & Li, Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem cells international 2016, 1314709, https://doi.org/10.1155/2016/1314709 (2016). Molecular therapy: the journal of the American Society of Gene Therapy S Kwon 24 1550 2016 10.1038/mt.2016.125 Kwon, S. et al. Anti-apoptotic Effects of Human Wharton’s Jelly-derived Mesenchymal Stem Cells on Skeletal Muscle Cells Mediated via Secretion of XCL1. Molecular therapy: the journal of the American Society of Gene Therapy 24, 1550–1560, https://doi.org/10.1038/mt.2016.125 (2016). Molecular medicine reports C Zhang 17 71 2018 10.3892/mmr.2017.7882 Zhang, C. et al. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNFalpha and TGFbeta1/ERK1/2 signaling pathways. Molecular medicine reports 17, 71–78, https://doi.org/10.3892/mmr.2017.7882 (2018). 10.1089/scd.2017.0248 Hamidian Jahromi, S., Estrada, C., Li, Y., Cheng, E. & Davies, J. E. Human Umbilical Cord Perivascular Cells and Human Bone Marrow Mesenchymal Stromal Cells Transplanted Intramuscularly Respond to a Distant Source of Inflammation. Stem cells and development, https://doi.org/10.1089/scd.2017.0248 (2018). Current diabetes reports NE Davis 12 612 2012 10.1007/s11892-012-0305-4 Davis, N. E., Hamilton, D. & Fontaine, M. J. Harnessing the immunomodulatory and tissue repair properties of mesenchymal stem cells to restore beta cell function. Current diabetes reports 12, 612–622, https://doi.org/10.1007/s11892-012-0305-4 (2012). Cell and tissue banking P Van Pham 17 289 2016 10.1007/s10561-015-9541-6 Van Pham, P. et al. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell and tissue banking 17, 289–302, https://doi.org/10.1007/s10561-015-9541-6 (2016). 10.3390/ijms17060982 Liu, S. et al. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. International journal of molecular sciences 17, https://doi.org/10.3390/ijms17060982 (2016). Advances in hematology Y Lin 2011 427863 2011 10.1155/2011/427863 Lin, Y. & Hogan, W. J. Clinical Application of Mesenchymal Stem Cells in the Treatment and Prevention of Graft-versus-Host Disease. Advances in hematology 2011, 427863, https://doi.org/10.1155/2011/427863 (2011). Cytotherapy O Karnieli 19 155 2017 10.1016/j.jcyt.2016.11.011 Karnieli, O. et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19, 155–169, https://doi.org/10.1016/j.jcyt.2016.11.011 (2017). Cell stem cell M Mendicino 14 141 2014 10.1016/j.stem.2014.01.013 Mendicino, M., Bailey, A. M., Wonnacott, K., Puri, R. K. & Bauer, S. R. MSC-based product characterization for clinical trials: an FDA perspective. Cell stem cell 14, 141–145, https://doi.org/10.1016/j.stem.2014.01.013 (2014). Altex J van der Valk 35 99 2018 10.14573/altex.1705101 van der Valk, J. et al. Fetal Bovine Serum (FBS): Past - Present - Future. Altex 35, 99–118, https://doi.org/10.14573/altex.1705101 (2018). Molecular therapy: the journal of the American Society of Gene Therapy JL Spees 9 747 2004 10.1016/j.ymthe.2004.02.012 Spees, J. L. et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Molecular therapy: the journal of the American Society of Gene Therapy 9, 747–756, https://doi.org/10.1016/j.ymthe.2004.02.012 (2004). Cytotherapy H Hemeda 16 170 2014 10.1016/j.jcyt.2013.11.004 Hemeda, H., Giebel, B. & Wagner, W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 16, 170–180, https://doi.org/10.1016/j.jcyt.2013.11.004 (2014). International journal of stem cells G Hassan 10 184 2017 10.15283/ijsc17028 Hassan, G., Kasem, I., Soukkarieh, C. & Aljamali, M. A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum. International journal of stem cells 10, 184–192, https://doi.org/10.15283/ijsc17028 (2017). Stem cell research & therapy A Blazquez-Prunera 8 103 2017 10.1186/s13287-017-0552-z Blazquez-Prunera, A., Diez, J. M., Gajardo, R. & Grancha, S. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem cell research & therapy 8, 103, https://doi.org/10.1186/s13287-017-0552-z (2017). Bulletin of experimental biology and medicine A Lykov 163 757 2017 10.1007/s10517-017-3897-5 Lykov, A. et al. Comparative Effects of Platelet-Rich Plasma, Platelet Lysate, and Fetal Calf Serum on Mesenchymal Stem Cells. Bulletin of experimental biology and medicine 163, 757–760 (2017). Cell and tissue research C Tekkatte 347 383 2012 10.1007/s00441-012-1328-5 Tekkatte, C., Vidyasekar, P., Kapadia, N. K. & Verma, R. S. Enhancement of adipogenic and osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells by supplementation with umbilical cord blood serum. Cell and tissue research 347, 383–395, https://doi.org/10.1007/s00441-012-1328-5 (2012). ISBT science series B Armstrong 3 216 2008 10.1111/j.1751-2824.2008.00199.x Armstrong, B. Benefits and risks of transfusion. ISBT science series 3, 216–230 (2008). Transfusion medicine (Oxford, England) S Thomas 26 330 2016 10.1111/tme.12327 Thomas, S. Platelets: handle with care. Transfusion medicine (Oxford, England) 26, 330–338, https://doi.org/10.1111/tme.12327 (2016). Biomaterials T Burnouf 76 371 2016 10.1016/j.biomaterials.2015.10.065 Burnouf, T., Strunk, D., Koh, M. B. & Schallmoser, K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 76, 371–387, https://doi.org/10.1016/j.biomaterials.2015.10.065 (2016). 10.1186/s12967-018-1400-3 Ren, J. et al. Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. 16, 65, https://doi.org/10.1186/s12967-018-1400-3 (2018). Journal of translational medicine J Phetfong 6 414 2017 10.1186/s12967-018-1400-310.1302/2046-3758.67.bjr-2016-0342.r1 Phetfong, J. et al. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Journal of translational medicine 6, 414–422, https://doi.org/10.1186/s12967-018-1400-310.1302/2046-3758.67.bjr-2016-0342.r1 (2017). Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation G Lucchini 16 1293 2010 10.1016/j.bbmt.2010.03.017 Lucchini, G. et al. Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 16, 1293–1301, https://doi.org/10.1016/j.bbmt.2010.03.017 (2010). Medical hypotheses CJ Centeno 71 900 2008 10.1016/j.mehy.2008.06.042 Centeno, C. J. et al. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Medical hypotheses 71, 900–908, https://doi.org/10.1016/j.mehy.2008.06.042 (2008). BMC veterinary research C Gittel 9 2013 10.1186/1746-6148-9-221 Gittel, C. et al. Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: comparison of cellular properties. BMC veterinary research 9, 221 (2013). Current stem cell research & therapy T Nagamura-Inoue 11 634 2016 10.2174/1574888X10666151026115017 Nagamura-Inoue, T. & Mukai, T. Umbilical Cord is a Rich Source of Mesenchymal Stromal Cells for Cell Therapy. Current stem cell research & therapy 11, 634–642 (2016). Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation L von Bahr 18 557 2012 10.1016/j.bbmt.2011.07.023 von Bahr, L. et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 18, 557–564, https://doi.org/10.1016/j.bbmt.2011.07.023 (2012). Developments in biological standardization GA Erickson 75 173 1991 Erickson, G. A., Bolin, S. R. & Landgraf, J. G. Viral contamination of fetal bovine serum used for tissue culture: risks and concerns. Developments in biological standardization 75, 173–175 (1991). Journal of molecular medicine (Berlin, Germany) S Bobis-Wozowicz 95 205 2017 10.1007/s00109-016-1471-7 Bobis-Wozowicz, S. et al. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. Journal of molecular medicine (Berlin, Germany) 95, 205–220, https://doi.org/10.1007/s00109-016-1471-7 (2017). Transfusion S Gerby 57 433 2017 10.1111/trf.13902 Gerby, S., Attebi, E., Vlaski, M. & Ivanovic, Z. A new clinical-scale serum-free xeno-free medium efficient in ex vivo amplification of mesenchymal stromal cells does not support mesenchymal stem cells. Transfusion 57, 433–439, https://doi.org/10.1111/trf.13902 (2017). Cytotechnology L Johansson 42 67 2003 10.1023/B:CYTO.0000009820.72920.cf Johansson, L., Klinth, J., Holmqvist, O. & Ohlson, S. Platelet lysate: a replacement for fetal bovine serum in animal cell culture? Cytotechnology 42, 67 (2003). 10.1155/2017/2185351 Blázquez-Prunera, A., Almeida, C. & Barbosa, M. Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. Stem cells international 2017 (2017). Journal of translational medicine S Laner-Plamberger 13 2015 10.1186/s12967-015-0717-4 Laner-Plamberger, S. et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. Journal of translational medicine 13, 354, https://doi.org/10.1186/s12967-015-0717-4 (2015). Cytotherapy M Dominici 8 315 2006 10.1080/14653240600855905 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317, https://doi.org/10.1080/14653240600855905 (2006). Stem cells international JR Smith 2016 6810980 2016 10.1155/2016/6810980 Smith, J. R. et al. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method. Stem cells international 2016, 6810980, https://doi.org/10.1155/2016/6810980 (2016). Stem cells and development R Donders 27 65 2018 10.1089/scd.2017.0029 Donders, R. et al. Human Wharton’s Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem cells and development 27, 65–84, https://doi.org/10.1089/scd.2017.0029 (2018). 10.1111/cpr.12334 Hendijani, F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell proliferation (2017). Journal of biomedical science E Klyushnenkova 12 47 2005 10.1007/s11373-004-8183-7 Klyushnenkova, E. et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. Journal of biomedical science 12, 47–57, https://doi.org/10.1007/s11373-004-8183-7 (2005). World journal of stem cells D Kyurkchiev 6 552 2014 10.4252/wjsc.v6.i5.552 Kyurkchiev, D. et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World journal of stem cells 6, 552–570, https://doi.org/10.4252/wjsc.v6.i5.552 (2014). Cytotherapy C de Wolf 19 784 2017 10.1016/j.jcyt.2017.03.076 de Wolf, C., van de Bovenkamp, M. & Hoefnagel, M. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy 19, 784–797, https://doi.org/10.1016/j.jcyt.2017.03.076 (2017). Stem cells international A Marmotti 2012 326813 2012 10.1155/2012/326813 Marmotti, A. et al. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem cells international 2012, 326813, https://doi.org/10.1155/2012/326813 (2012). 10.3791/1523 Schallmoser, K. & Strunk, D. Preparation of pooled human platelet lysate (pHPL) as an efficient supplement for animal serum-free human stem cell cultures. Journal of visualized experiments: JoVE, https://doi.org/10.3791/1523 (2009). Stem cell research & therapy R Fazzina 7 122 2016 10.1186/s13287-016-0383-3 Fazzina, R. et al. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues. Stem cell research & therapy 7, 122, https://doi.org/10.1186/s13287-016-0383-3 (2016). 10.1111/vox.12593 Strunk, D. & Lozano, M. International Forum on GMP-grade human platelet lysate for cell propagation: summary. 113, 80–87, https://doi.org/10.1111/vox.12593 (2018). PloS one M Lohmann 7 e37839 2012 10.1371/journal.pone.0037839 Lohmann, M. et al. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PloS one 7, e37839, https://doi.org/10.1371/journal.pone.0037839 (2012). Cytotherapy P Horn 12 888 2010 10.3109/14653249.2010.501788 Horn, P. et al. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12, 888–898, https://doi.org/10.3109/14653249.2010.501788 (2010).
Item Type: | Article |
---|---|
Subjects: | Biotechnology > Microbiology |
Divisions: | Biotechnology |
Depositing User: | Mr IR Admin |
Date Deposited: | 26 Sep 2024 09:12 |
Last Modified: | 26 Sep 2024 09:12 |
URI: | https://ir.vistas.ac.in/id/eprint/7292 |