Devi, Kadirvel and Shanmugarajan, Thukani Sathanantham (2023) Therapeutic Potential of Plant Metabolites in Bone Apoptosis: A Review. Current Drug Targets, 24 (11). pp. 857-869. ISSN 13894501
![[thumbnail of Therapeutic Potential of Plant Metabolites in Bone Apoptosis_ A Review - PubMed.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
Therapeutic Potential of Plant Metabolites in Bone Apoptosis_ A Review - PubMed.pdf
Download (88kB)
Abstract
Therapeutic Potential of Plant Metabolites in Bone Apoptosis: A Review Kadirvel Devi https://orcid.org/0000-0002-1788-731X Thukani Sathanantham Shanmugarajan https://orcid.org/0000-0003-0167-4579 Abstract:
Osteoporosis is one of the skeletal diseases of major health concern worldwide. Homeostasis of bone occurs with the help of cells, namely, osteoblasts and osteoclasts. Physiological and pathological conditions involve the death of the cells by apoptosis, autophagy, and necrosis. Apoptosis is a key factor in the growth, development, and maintenance of the skeleton. Apoptosis is generated by two pathways: the intrinsic (mitochondria) and extrinsic (death receptor) pathways. Osteoblast apoptosis is governed by the factors like B cell lymphoma 2 (Bcl-2) family proteins, extracellular signal-regulated kinase (ERK), mitogen-activated protein kinases (MAPK), phosphoinositide- 3-kinase/ protein kinase B (PI3-K/Akt), Janus kinase 2 (JAK2), bone morphogenetic protein (BMP), and bone matrix protein. Cytokines interact with osteocytes and induce apoptosis. A pro-inflammatory signal stimulates osteocyte apoptosis and increases osteocyte cytokines production. Current therapies have adverse effects which limit their applications. Various plant metabolites have shown beneficial effects on bone. The present review converses about normal bone metabolism and the mechanism of apoptosis leading to bone deterioration. Furthermore, it discusses the role of plant metabolites on bone apoptosis with related indications of efficacy in various experimental models.
08 2023 857 869 LiveAll1 1 10.2174/BSP_crossmark_policy eurekaselect.com true Peer Reviewed Single blind Checked with iThenticate 2023-02-01 2023-05-24 2023-06-19 2023-08-28 10.2174/1389450124666230801094525 https://www.eurekaselect.com/219324/article https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/article/download?doi=10.2174/1389450124666230801094525 https://www.eurekaselect.com/219324/article Expert Opin Pharmacother Miller P.D. 17 473 2016 10.1517/14656566.2016.1124856 Miller P.D.; Management of severe osteoporosis. Expert Opin Pharmacother 2016,17(4),473-488 Endocrinol Metab Clin North Am Armas L.A.G. 41 475 2012 10.1016/j.ecl.2012.04.006 Armas L.A.G.; Recker R.R.; Pathophyssporosis. Endocrinol Metab Clin North Am 2012,41(3),475-486 Endocr Rev Manolagas S.C. 21 115 2000 10.1210/edrv.21.2.0395 Manolagas S.C.; Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000,21(2),115-137 Mol Biol Rep Gunjegaonkar S.M. 46 647 2019 10.1007/s11033-018-4520-1 Gunjegaonkar S.M.; Shanmugarajan T.S.; Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis. Mol Biol Rep 2019,46(1),647-656 Pharmacol Ther Song S. 237 108168 2022 10.1016/j.pharmthera.2022.108168 Song S.; Guo Y.; Yang Y.; Fu D.; Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022,237,108168 BMC Musculoskelet Disord Giner M. 14 41 2013 10.1186/1471-2474-14-41 Giner M.; Montoya M.J.; Vázquez M.A.; Miranda C.; Pérez-Cano R.; Differences in osteogenic and apoptotic genes between osteoporotic and osteoarthritic patients. BMC Musculoskelet Disord 2013,14(1),41 Toxicol Pathol Elmore S. 35 495 2007 10.1080/01926230701320337 Elmore S.; Apoptosis: A review of programmed cell death. Toxicol Pathol 2007,35(4),495-516 Bonekey Rep Almeida M. 1 102 2012 10.1038/bonekey.2012.102 Almeida M.; Aging mechanisms in bone. Bonekey Rep 2012,1(7),102 Int J Mol Sci Chandra A. 22 3553 2021 10.3390/ijms22073553 Chandra A.; Rajawat J.; Skeletal aging and osteoporosis: Mechanisms and therapeutics. Int J Mol Sci 2021,22(7),3553 Biomed Pharmacother Venugopalan S.K. 83 1485 2016 10.1016/j.biopha.2016.08.068 Venugopalan S.K.; Shanmugarajan T.S.; Navaratnam V.; Mansor S.M.; Ramanathan S.; Dexamethasone provoked mitochondrial perturbations in thymus: Possible role of N-acetylglucosamine in restoration of mitochondrial function. Biomed Pharmacother 2016,83,1485-1492 Pharmacol Res Li Z. 187 106635 2023 10.1016/j.phrs.2022.106635 Li Z.; Li D.; Chen R.; Gao S.; Xu Z.; Li N.; Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023,187,106635 Proc Natl Acad Sci Liu X. 104 2259 2007 10.1073/pnas.0604153104 Liu X.; Bruxvoort K.J.; Zylstra C.R.; Liu J.; Cichowski R.; Faugere M.C.; Bouxsein M.L.; Wan C.; Williams B.O.; Clemens T.L.; Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci 2007,104(7),2259-2264 Int J Endocrinol Liu L. 2013 1 2013 10.1155/2013/786574 Liu L.; Liu L.; Bo T.; Li S.; Zhu Z.; Cui R.; Mao D.; Puerarin suppress apoptosis of human osteoblasts via ERK signaling pathway. Int J Endocrinol 2013,2013,1-6 Toxicol Mech Methods Shanmugarajan T.S. 19 129 2009 10.1080/15376510802322489 Shanmugarajan T.S.; Devaki T.; Hepatic perturbations provoked by azathioprine: A paradigm to rationalize the cytoprotective potential of Ficus hispida Linn. Toxicol Mech Methods 2009,19(2),129-134 Endocrine Weinstein R.S. 41 183 2012 10.1007/s12020-011-9580-0 Weinstein R.S.; Glucocorticoid-induced osteonecrosis. Endocrine 2012,41(2),183-190 Apoptosis Wang T. 25 157 2020 10.1007/s10495-020-01599-0 Wang T.; Liu X.; He C.; Glucocorticoid-induced autophagy and apoptosis in bone. Apoptosis 2020,25(3-4),157-168 Physiol Rev Okamoto K. 97 1295 2017 10.1152/physrev.00036.2016 Okamoto K.; Nakashima T.; Shinohara M.; Negishi-Koga T.; Komatsu N.; Terashima A.; Sawa S.; Nitta T.; Takayanagi H.; Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017,97(4),1295-1349 Nat Rev Drug Discov Redlich K. 11 234 2012 10.1038/nrd3669 Redlich K.; Smolen J.S.; Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012,11(3),234-250 J Exp Med Kobayashi K. 191 275 2000 10.1084/jem.191.2.275 Kobayashi K.; Takahashi N.; Jimi E.; Udagawa N.; Takami M.; Kotake S.; Nakagawa N.; Kinosaki M.; Yamaguchi K.; Shima N.; Yasuda H.; Morinaga T.; Higashio K.; Martin T.J.; Suda T.; Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000,191(2),275-286 J Clin Invest Lam J. 106 1481 2000 10.1172/JCI11176 Lam J.; Takeshita S.; Barker J.E.; Kanagawa O.; Ross F.P.; Teitelbaum S.L.; TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000,106(12),1481-1488 Nature Gowen M. 306 378 1983 10.1038/306378a0 Gowen M.; Wood D.D.; Ihrie E.J.; McGuire M.K.B.; Russell R.G.G.; An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983,306(5941),378-380 J Bone Miner Res Pfeilschifter J. 4 113 1989 10.1002/jbmr.5650040116 Pfeilschifter J.; Chenu C.; Bird A.; Mundy G.R.; Roodman D.G.; Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res 1989,4(1),113-118 J Bone Miner Res Jilka R.L. 22 1492 2007 10.1359/jbmr.070518 Jilka R.L.; Weinstein R.S.; Parfitt A.M.; Manolagas S.C.; Quantifying osteoblast and osteocyte apoptosis: Challenges and rewards. J Bone Miner Res 2007,22(10),1492-1501 Gene Nanes M.S. 321 1 2003 10.1016/S0378-1119(03)00841-2 Nanes M.S.; Tumor necrosis factor-α: Molecular and cellular mechanisms in skeletal pathology. Gene 2003,321,1-15 Cytokine Abbas S. 22 33 2003 10.1016/S1043-4666(03)00106-6 Abbas S.; Zhang Y.H.; Clohisy J.C.; Abu-Amer Y.; Tumor necrosis factor-α inhibits pre-osteoblast differentiation through its type-1 receptor. Cytokine 2003,22(1-2),33-41 Nature Bertolini D.R. 319 516 1986 10.1038/319516a0 Bertolini D.R.; Nedwin G.E.; Bringman T.S.; Smith D.D.; Mundy G.R.; Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 1986,319(6053),516-518 J Biol Chem Kaneki H. 281 4326 2006 10.1074/jbc.M509430200 Kaneki H.; Guo R.; Chen D.; Yao Z.; Schwarz E.M.; Zhang Y.E.; Boyce B.F.; Xing L.; Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 2006,281(7),4326-4333 J Cell Physiol Pavalko F.M. 194 194 2003 10.1002/jcp.10221 Pavalko F.M.; Gerard R.L.; Ponik S.M.; Gallagher P.J.; Jin Y.; Norvell S.M.; Fluid shear stress inhibits TNF-α-induced apoptosis in osteoblasts: A role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol 2003,194(2),194-205 Cytokine Growth Factor Rev Steeve K.T. 15 49 2004 10.1016/j.cytogfr.2003.10.005 Steeve K.T.; Marc P.; Sandrine T.; Dominique H.; Yannick F.; IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004,15(1),49-60 Bone Hofbauer L.C. 25 255 1999 10.1016/S8756-3282(99)00162-3 Hofbauer L.C.; Lacey D.L.; Dunstan C.R.; Spelsberg T.C.; Riggs B.L.; Khosla S.; Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999,25(3),255-259 J Bone Miner Res Metzger C.E. 32 802 2017 10.1002/jbmr.3027 Metzger C.E.; Narayanan A.; Zawieja D.C.; Bloomfield S.A.; Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turn over. J Bone Miner Res 2017,32(4),802-813 FASEB J Narayanan S.A. 32 4848 2018 10.1096/fj.201800178R Narayanan S.A.; Metzger C.E.; Bloomfield S.A.; Zawieja D.C.; Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease. FASEB J 2018,32(9),4848-4861 Bone Liao C. 101 10 2017 10.1016/j.bone.2017.04.003 Liao C.; Cheng T.; Wang S.; Zhang C.; Jin L.; Yang Y.; Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways. Bone 2017,101,10-20 Cell Metab Li J.Y. 22 799 2015 10.1016/j.cmet.2015.09.012 Li J.Y.; D’Amelio P.; Robinson J.; Walker L.D.; Vaccaro C.; Luo T.; Tyagi A.M.; Yu M.; Reott M.; Sassi F.; Buondonno I.; Adams J.; Weitzmann M.N.; Isaia G.C.; Pacifici R.; IL-17 is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab 2015,22(5),799-810 Cell Physiol Biochem Wu Q. 41 1360 2017 10.1159/000465455 Wu Q.; Zhou X.; Huang D.; Ji Y.; Kang F.; IL-6 enhances osteocyte mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem 2017,41(4),1360-1369 J Clin Periodontol Graves D.T. 45 285 2018 10.1111/jcpe.12851 Graves D.T.; Alshabab A.; Albiero M.L.; Mattos M.; Corrêa J.D.; Chen S.; Yang Y.; Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol 2018,45(3),285-292 J Periodontol Kim J.H. 85 e370 2014 10.1902/jop.2014.140230 Kim J.H.; Lee D.E.; Cha J.H.; Bak E.J.; Yoo Y.J.; Receptor activator of nuclear factor-κB ligand and sclerostin expression in osteocytes of alveolar bone in rats with ligature-induced periodontitis. J Periodontol 2014,85(11),e370-e378 PLoS One Kim J.H. 12 e0189702 2017 10.1371/journal.pone.0189702 Kim J.H.; Kim A.R.; Choi Y.H.; Jang S.; Woo G.H.; Cha J.H.; Bak E.J.; Yoo Y.J.; Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis. PLoS One 2017,12(12),e0189702 Front Endocrinol (Lausanne) Metzger C.E. 10 285 2019 10.3389/fendo.2019.00285 Metzger C.E.; Narayanan S.A.; The Role of Osteocytes in Inflammatory Bone Loss. Front Endocrinol (Lausanne) 2019,10,285 Int Endod J Silva R.A.B. 53 84 2020 10.1111/iej.13206 Silva R.A.B.; Sousa-Pereira A.P.; Lucisano M.P.; Romualdo P.C.; Paula-Silva F.W.G.; Consolaro A.; Silva L.A.B.; Nelson-Filho P.; Alendronate inhibits osteocyte apoptosis and inflammation via -6, inhibiting bone resorption in periapical lesions of ovariectomized rats. Int Endod J 2020,53(1),84-96 Oxid Med Cell Longev Abdel-Naim A.B. 2018 1 2018 10.1155/2018/5106469 Abdel-Naim A.B.; Alghamdi A.A.; Algandaby M.M.; Al-Abbasi F.A.; Al-Abd A.M.; Eid B.G.; Abdallah H.M.; El-Halawany A.M.; Rutin isolated from chrozophora tinctoria enhances bone cell proliferation and ossification markers. Oxid Med Cell Longev 2018,2018,1-10 Am J Med Saikumar P. 107 489 1999 10.1016/S0002-9343(99)00259-4 Saikumar P.; Dong Z.; Mikhailov V.; Denton M.; Weinberg J.M.; Venkatachalam M.A.; Apoptosis: Definition, mechanisms, and relevance to disease. Am J Med 1999,107(5),489-506 Cell Death Differ Julien O. 24 1380 2017 10.1038/cdd.2017.44 Julien O.; Wells J.A.; Caspases and their substrates. Cell Death Differ 2017,24(8),1380-1389 Mol Cell Boatright K.M. 11 529 2003 10.1016/S1097-2765(03)00051-0 Boatright K.M.; Renatus M.; Scott F.L.; Sperandio S.; Shin H.; Pedersen I.M.; Ricci J.E.; Edris W.A.; Sutherlin D.P.; Green D.R.; Salvesen G.S.; A unified model for apical caspase activation. Mol Cell 2003,11(2),529-541 Cell Death Differ Dorstyn L. 25 1194 2018 10.1038/s41418-017-0025-z Dorstyn L.; Akey C.W.; Kumar S.; New insights into apoptosome structure and function. Cell Death Differ 2018,25(7),1194-1208 Science Wei M.C. 292 727 2001 10.1126/science.1059108 Wei M.C.; Zong W.X.; Cheng E.H.Y.; Lindsten T.; Panoutsakopoulou V.; Ross A.J.; Roth K.A.; MacGregor G.R.; Thompson C.B.; Korsmeyer S.J.; Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001,292(5517),727-730 Cell Edlich F. 145 104 2011 10.1016/j.cell.2011.02.034 Edlich F.; Banerjee S.; Suzuki M.; Cleland M.M.; Arnoult D.; Wang C.; Neutzner A.; Tjandra N.; Youle R.J.; Bcl- xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 2011,145(1),104-116 EMBO J Todt F. 34 67 2015 10.15252/embj.201488806 Todt F.; Cakir Z.; Reichenbach F.; Emschermann F.; Lauterwasser J.; Kaiser A.; Ichim G.; Tait S.W.G.; Frank S.; Langer H.F.; Edlich F.; Differential retrotranslocation of mitochondrial Bax and Bak. EMBO J 2015,34(1),67-80 Mol Cell Schellenberg B. 49 959 2013 10.1016/j.molcel.2012.12.022 Schellenberg B.; Wang P.; Keeble J.A.; Rodriguez-Enriquez R.; Walker S.; Owens T.W.; Foster F.; Tanianis-Hughes J.; Brennan K.; Streuli C.H.; Gilmore A.P.; Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell 2013,49(5),959-971 Cancer Cell Letai A. 2 183 2002 10.1016/S1535-6108(02)00127-7 Letai A.; Bassik M.C.; Walensky L.D.; Sorcinelli M.D.; Weiler S.; Korsmeyer S.J.; Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002,2(3),183-192 Mol Cell Dewson G. 30 369 2008 10.1016/j.molcel.2008.04.005 Dewson G.; Kratina T.; Sim H.W.; Puthalakath H.; Adams J.M.; Colman P.M.; Kluck R.M.; To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3: Groove interactions. Mol Cell 2008,30(3),369-380 Cell Death Differ Dewson G. 19 661 2012 10.1038/cdd.2011.138 Dewson G.; Ma S.; Frederick P.; Hockings C.; Tan I.; Kratina T.; Kluck R.M.; Bax dimerizes via a symmetric BH3: Groove interface during apoptosis. Cell Death Differ 2012,19(4),661-670 Nat Commun Subburaj Y. 6 8042 2015 10.1038/ncomms9042 Subburaj Y.; Cosentino K.; Axmann M.; Pedrueza-Villalmanzo E.; Hermann E.; Bleicken S.; Spatz J.; García-Sáez A.J.; Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun 2015,6(1),8042 J Biol Chem Bleicken S. 285 6636 2010 10.1074/jbc.M109.081539 Bleicken S.; Classen M.; Padmavathi P.V.L.; Ishikawa T.; Zeth K.; Steinhoff H.J.; Bordignon E.; Molecular details of bax activation, oligomerization, and membrane insertion. J Biol Chem 2010,285(9),6636-6647 Cell Rongvaux A. 159 1563 2014 10.1016/j.cell.2014.11.037 Rongvaux A.; Jackson R.; Harman C.C.D.; Li T.; West A.P.; de Zoete M.R.; Wu Y.; Yordy B.; Lakhani S.A.; Kuan C.Y.; Taniguchi T.; Shadel G.S.; Chen Z.J.; Iwasaki A.; Flavell R.A.; Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014,159(7),1563-1577 Cell White M.J. 159 1549 2014 10.1016/j.cell.2014.11.036 White M.J.; McArthur K.; Metcalf D.; Lane R.M.; Cambier J.C.; Herold M.J.; van Delft M.F.; Bedoui S.; Lessene G.; Ritchie M.E.; Huang D.C.S.; Kile B.T.; Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014,159(7),1549-1562 Mol Cell Llambi F. 44 517 2011 10.1016/j.molcel.2011.10.001 Llambi F.; Moldoveanu T.; Tait S.W.G.; Bouchier-Hayes L.; Temirov J.; McCormick L.L.; Dillon C.P.; Green D.R.; A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 2011,44(4),517-531 Genes Dev O’Neill K.L. 30 973 2016 10.1101/gad.276725.115 O’Neill K.L.; Huang K.; Zhang J.; Chen Y.; Luo X.; Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev 2016,30(8),973-988 Stem Cell Res Ther Fang J. 10 312 2019 10.1186/s13287-019-1419-2 Fang J.; Zhao X.; Li S.; Xing X.; Wang H.; Lazarovici P.; Zheng W.; Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90-CREB pathway. Stem Cell Res Ther 2019,10(1),312 Free Radic Biol Med Saito Y. 49 1542 2010 10.1016/j.freeradbiomed.2010.08.016 Saito Y.; Nishio K.; Akazawa Y.O.; Yamanaka K.; Miyama A.; Yoshida Y.; Noguchi N.; Niki E.; Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med 2010,49(10),1542-1549 Front Biosci Rezk B.M. 12 2013 2007 10.2741/2206 Rezk B.M.; van der Vijgh W.J.; Bast A.; Haenen G.R.; α-tocopheryl phosphate is a novel apoptotic agent. Front Biosci 2007,12(1),2013-2019 Ann N Y Acad Sci Ogru E. 1031 405 2004 10.1196/annals.1331.058 Ogru E.; Libinaki R.; Gianello R.; West S.; Munteanu A.; Zingg J.M.; Azzi A.; Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: Relevance to atherosclerosis and inflammation. Ann N Y Acad Sci 2004,1031(1),405-411 J Biol Chem Yanamala N. 289 32488 2014 10.1074/jbc.M114.601377 Yanamala N.; Kapralov A.A.; Djukic M.; Peterson J.; Mao G.; Klein-Seetharaman J.; Stoyanovsky D.A.; Stursa J.; Neuzil J.; Kagan V.E.; Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E, tocopherol succinate and tocopherol phosphate. J Biol Chem 2014,289(47),32488-32498 J Vasc Surg Wu Z. 67 1263 2018 10.1016/j.jvs.2017.02.051 Wu Z.; Zheng X.; Meng L.; Fang X.; He Y.; Li D.; Zheng C.; Zhang H.; α-Tocopherol, especially α-tocopherol phosphate, exerts antiapoptotic and angiogenic effects on rat bone marrow-derived endothelial progenitor cells under high-glucose and hypoxia conditions. J Vasc Surg 2018,67(4),1263-1273.e1 Exp Ther Med Li W. 12 4041 2016 10.3892/etm.2016.3866 Li W.; Liu Y.; Wang B.; Luo Y.; Hu N.; Chen D.; Zhang X.; Xiong Y.; Protective effect of berberine against oxidative stress-induced apoptosis in rat bone marrow-derived mesenchymal stem cells. Exp Ther Med 2016,12(6),4041-4048 Bone Huang Q. 66 306 2014 10.1016/j.bone.2014.06.010 Huang Q.; Gao B.; Jie Q.; Wei B.Y.; Fan J.; Zhang H.Y.; Zhang J.K.; Li X.J.; Shi J.; Luo Z.J.; Yang L.; Liu J.; Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 2014,66,306-314 Immunology Liu Y. 143 81 2014 10.1111/imm.12296 Liu Y.; Chen L.Y.; Sokolowska M.; Eberlein M.; Alsaaty S.; Martinez-Anton A.; Logun C.; Qi H.Y.; Shelhamer J.H.; The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A via GPR120 receptor to produce prostaglandin E and plays an anti-inflammatory role in macrophages. Immunology 2014,143(1),81-95 J Biol Chem Katsuma S. 280 19507 2005 10.1074/jbc.M412385200 Katsuma S.; Hatae N.; Yano T.; Ruike Y.; Kimura M.; Hirasawa A.; Tsujimoto G.; Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 2005,280(20),19507-19515 Stem Cells Dev Gao B. 24 781 2015 10.1089/scd.2014.0367 Gao B.; Huang Q.; Jie Q.; Zhang H.Y.; Wang L.; Guo Y.S.; Sun Z.; Wei B.Y.; Han Y.H.; Liu J.; Yang L.; Luo Z.J.; Ginsenoside-Rb2 inhibits dexamethasone-induced apoptosis through promotion of GPR120 induction in bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2015,24(6),781-790 Front Pharmacol Ho M.X. 9 474 2018 10.3389/fphar.2018.00474 Ho M.X.; Poon C.C.W.; Wong K.C.; Qiu Z.C.; Wong M.S.; Wong M.; Icariin, but not genistein, exerts osteogenic and anti-apoptotic effects in osteoblastic cells by selective activation of non-genomic ERα signaling. Front Pharmacol 2018,9,474 Front Endocrinol Wang S. 13 874849 2022 10.3389/fendo.2022.874849 Wang S.; Wang S.; Wang X.; Xu Y.; Zhang X.; Han Y.; Yan H.; Liu L.; Wang L.; Ye H.; Li X.; Effects of icariin on modulating gut microbiota and regulating metabolite alterations to prevent bone loss in ovariectomized rat model. Front Endocrinol 2022,13,874849 Biochem Biophys Res Commun Lin H. 460 422 2015 10.1016/j.bbrc.2015.03.049 Lin H.; Gao X.; Chen G.; Sun J.; Chu J.; Jing K.; Li P.; Zeng R.; Wei B.; Indole-3-carbinol as inhibitors of glucocorticoid-induced apoptosis in osteoblastic cells through blocking ROS-mediated Nrf2 pathway. Biochem Biophys Res Commun 2015,460(2),422-427 Nutr Rev Houghton C.A. 71 709 2013 10.1111/nure.12060 Houghton C.A.; Fassett R.G.; Coombes J.S.; Sulforaphane: Translational research from laboratory bench to clinic. Nutr Rev 2013,71(11),709-726 Drug Des Devel Ther Lin H. 8 973 2014 10.2147/DDDT.S65410 Lin H.; Wei B.; Li G.; Zheng J.; Sun J.; Chu J.; Zeng R.; Niu Y.; Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway. Drug Des Devel Ther 2014,8,973-982 J Cell Biochem Bhargavan B. 108 388 2009 10.1002/jcb.22264 Bhargavan B.; Gautam A.K.; Singh D.; Kumar A.; Chaurasia S.; Tyagi A.M.; Yadav D.K.; Mishra J.S.; Singh A.B.; Sanyal S.; Goel A.; Maurya R.; Chattopadhyay N.; Methoxylated isoflavones, cajanin and isoformononetin, have non-estrogenic bone forming effect via differential mitogen activated protein kinase (MAPK) signaling. J Cell Biochem 2009,108(2),388-399 Free Radic Biol Med Li S.Y. 48 597 2010 10.1016/j.freeradbiomed.2009.12.004 Li S.Y.; Jia Y.H.; Sun W.G.; Tang Y.; An G.S.; Ni J.H.; Jia H.T.; Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus. Free Radic Biol Med 2010,48(4),597-608 Basic Clin Pharmacol Toxicol Li W.M. 106 45 2009 10.1111/j.1742-7843.2009.00470.x Li W.M.; Liu H.T.; Li X.Y.; Wu J.Y.; Xu G.; Teng Y.Z.; Ding S.T.; Yu C.; The effect of tetramethylpyrazine on hydrogen peroxide-induced oxidative damage in human umbilical vein endothelial cells. Basic Clin Pharmacol Toxicol 2009,106(1),45-52 Neurosci Lett Liao S.L. 372 40 2004 10.1016/j.neulet.2004.09.013 Liao S.L.; Kao T.K.; Chen W.Y.; Lin Y.S.; Chen S.Y.; Raung S.L.; Wu C.W.; Lu H.C.; Chen C.J.; Tetramethylpyrazine reduces ischemic brain injury in rats. Neurosci Lett 2004,372(1-2),40-45 Biol Pharm Bull Fang Y. 40 2146 2017 10.1248/bpb.b17-00524 Fang Y.; Chu L.; Li L.; Wang J.; Yang Y.; Gu J.; Zhang J.; Tetramethylpyrazine protects bone marrow-derived mesenchymal stem cells against hydrogen peroxide-induced apoptosis through PI3K/Akt and ERK1/2 pathways. Biol Pharm Bull 2017,40(12),2146-2152 Eur J Pharmacol Zhang J.K. 689 31 2012 10.1016/j.ejphar.2012.05.045 Zhang J.K.; Yang L.; Meng G.L.; Fan J.; Chen J.Z.; He Q.Z.; Chen S.; Fan J.Z.; Luo Z.J.; Liu J.; Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Eur J Pharmacol 2012,689(1-3),31-37 Neurosci Lett Li X. 483 1 2010 10.1016/j.neulet.2010.07.027 Li X.; Li Y.; Chen J.; Sun J.; Li X.; Sun X.; Kang X.; Tetrahydroxystilbene glucoside attenuates MPP+-induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation. Neurosci Lett 2010,483(1),1-5 Toxicol Lett Qin R. 202 1 2011 10.1016/j.toxlet.2011.01.001 Qin R.; Li X.; Li G.; Tao L.; Li Y.; Sun J.; Kang X.; Chen J.; Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: The involvement of PI3K/Akt pathway activation. Toxicol Lett 2011,202(1),1-7 PLoS One Tao L. 6 e26055 2011 10.1371/journal.pone.0026055 Tao L.; Li X.; Zhang L.; Tian J.; Li X.; Sun X.; Li X.; Jiang L.; Zhang X.; Chen J.; Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. PLoS One 2011,6(10),e26055 Choi E.M. 23 862 2009 10.1016/j.tiv.2009.05.005 Choi E.M.; Kim G.H.; Lee Y.S.; Protective effects of dehydrocostus lactone against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Toxicol in vitro 2009,23(5),862-867 BioMed Res Int Chen S. 2017 1 2017 10.1155/2017/3524307 Chen S.; Wang Y.; Yang Y.; Xiang T.; Liu J.; Zhou H.; Wu X.; Psoralen inhibited apoptosis of osteoporotic osteoblasts by modulating IRE1-ASK1-JNK pathway. BioMed Res Int 2017,2017,1-9 Int Immunopharmacol Lee S.R. 11 1251 2011 10.1016/j.intimp.2011.04.004 Lee S.R.; Kwak J.H.; Park D.S.; Pyo S.; Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: Involvement of JNK, NF-κB and AP-1 pathways. Int Immunopharmacol 2011,11(9),1251-1259 Mol Med Rep Wei Y. 17 1493 2017 10.3892/mmr.2017.8036 Wei Y.; Jia J.; Jin X.; Tong W.; Tian H.; Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. Mol Med Rep 2017,17(1),1493-1498 Phytomedicine Wang Y. 20 787 2013 10.1016/j.phymed.2013.03.005 Wang Y.; Wang W.L.; Xie W.L.; Li L.Z.; Sun J.; Sun W.J.; Gong H.Y.; Puerarin stimulates proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation. Phytomedicine 2013,20(10),787-796 Phytomedicine Li B. 102 154198 2022 10.1016/j.phymed.2022.154198 Li B.; Wang Y.; Gong S.; Yao W.; Gao H.; Liu M.; Wei M.; Puerarin improves OVX-induced osteoporosis by regulating phospholipid metabolism and biosynthesis of unsaturated fatty acids based on serum metabolomics. Phytomedicine 2022,102,154198 Acta Pharmacol Sin Yang Y. 39 633 2018 10.1038/aps.2017.134 Yang Y.; Zhu Z.; Wang D.; Zhang X.; Liu Y.; Lai W.; Mo Y.; Li J.; Liang Y.; Hu Z.; Yu Y.; Cui L.; Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin 2018,39(4),633-641 Bone Huang Q. 74 18 2015 10.1016/j.bone.2015.01.002 Huang Q.; Gao B.; Wang L.; Zhang H.Y.; Li X.J.; Shi J.; Wang Z.; Zhang J.K.; Yang L.; Luo Z.J.; Liu J.; Ophiopogonin D.; Ophiopogonin D: A new herbal agent against osteoporosis. Bone 2015,74,18-28
Item Type: | Article |
---|---|
Subjects: | Pharmaceutics > Pharmaceutical Biotechnology |
Divisions: | Pharmaceutics |
Depositing User: | Mr IR Admin |
Date Deposited: | 24 Sep 2024 07:17 |
Last Modified: | 24 Sep 2024 07:17 |
URI: | https://ir.vistas.ac.in/id/eprint/7001 |