Thileep Kumar, K. and Raghu, S. and Shanmugharaj, A. M. (2022) Transmogrifying waste blister packs into defect-engineered graphene-like turbostratic carbon: novel lithium-ion (Li-ion) battery anode with noteworthy electrochemical characteristics. Nanoscale, 14 (11). pp. 4312-4323. ISSN 2040-3364
Full text not available from this repository. (Request a copy)Abstract
Transmogrifying waste blister packs into defect-engineered graphene-like turbostratic carbon: novel lithium-ion (Li-ion) battery anode with noteworthy electrochemical characteristics K. Thileep Kumar Centre for Energy and Alternative Fuels/Department of Chemistry, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-600 117, Tamil Nadu, India S. Raghu Centre for Energy and Alternative Fuels/Department of Chemistry, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-600 117, Tamil Nadu, India http://orcid.org/0000-0001-5348-5353 A. M. Shanmugharaj Centre for Energy and Alternative Fuels/Department of Chemistry, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-600 117, Tamil Nadu, India http://orcid.org/0000-0003-0095-6857
The study discusses the preparation steps of turbostratic carbon with graphene-like features from the waste blister packaging materials. The prepared materials renders outstanding cycling stability, when used as an anode material in Li-ion batteries.
    Blister packing materials (BMs) made up of foamed plastics are one of the major components in consumer goods, pharmaceuticals, and medical devices, which lead to a serious environmental concern as the waste management processes often result in land filling and incineration. The effective recycling of these foamed plastics has turned out to be a topic of interest in recent years to address environmental issues. Under stipulated experimental conditions, the foamed plastic of blister packaging materials, consisting of a higher percentage of carbon can provide an efficient anode material for energy storage devices. The present work outlines the preparation steps of defect-engineered graphene-like turbostratic carbon via. a physico-chemical activation method resulting in the formation of ultralow surface area (∼11.4 m 2 g −1 ) carbon materials. In addition, graphene-like wrinkled morphologies were found to exist in the carbonaceous materials prepared at higher activation temperature (∼1400 °C) with a notable change in the crystalline characteristics on par with the commercial graphite anode. Therefore, it is expected that the material could be used in the same manner as conventional graphite materials to fabricate the cells. The prepared carbon, when explored as a lithium-ion battery (Li-ion) anode, provided outstanding electrochemical properties with a noteworthy Li-ion storage capacity of 594 mA h g −1 measured at a current rate of 0.1 C after 200 cycles, thanks to its graphene-like features, facilitating faster Li + diffusion. Even at a high C-rate (1 C), the waste plastic-derived carbon displayed outstanding rate performance (∼304 mA h g −1 ) with noteworthy capacity retention (∼89%) and enhanced cycling stability (over 2000 cycles). Thus, the present research paves a new route for generating value-added carbon materials using foamed plastic med-wastes derived from blister packs. 
   2022   4312 4323   1 10.1039/rsc_crossmark_policy   rsc.org   true     Department of Science and Technology, Ministry of Science and Technology, India https://doi.org/10.13039/501100001409     Science and Engineering Research Board https://doi.org/10.13039/501100001843  ECR/2017/000815    http://rsc.li/journals-terms-of-use     10.1039/D1NR07183A 20220317175257 https://xlink.rsc.org/?DOI=D1NR07183A   http://pubs.rsc.org/en/content/articlepdf/2022/NR/D1NR07183A      J. Electrochem. Soc. Lebedeva 166 2019 10.1149/2.1151904jes A779   IEEE Access Gao 7 2019 10.1109/ACCESS.2019.2906117 43511   J. Power Sources Almar 427 2019 10.1016/j.jpowsour.2019.04.019 1   Nanoscale Westover 7 2015 10.1039/C4NR04720F 98   Nature Tarascon 414 2001 10.1038/35104644 359   Carbon Lim 121 2017 10.1016/j.carbon.2017.05.079 134   Electrochim. Acta Kumaresan 368 2021 10.1016/j.electacta.2020.137574 137574   Chem. Commun. Deringer 54 2018 10.1039/C8CC01388H 5988   Adv. Energy Mater. Lu 8 2018 10.1002/aenm.201702434 1702434   Adv. Sci. Li 2 2015 10.1002/advs.201500031 1500031   Asian J. Chem. Thileep Kumar 31 2019 10.14233/ajchem.2019.21912 1163   Electrochim. Acta Karegeya 250 2017 10.1016/j.electacta.2017.08.006 49   Electrochem. Commun. Zhang 11 2009 10.1016/j.elecom.2008.10.041 130   Electrochim. Acta Tang 88 2013 64   New J. Chem. Li 40 2016 10.1039/C5NJ01970B 325   Mater. Lett. Kumaresan 276 2020 10.1016/j.matlet.2020.128218 128218   Nanoscale Chen 7 2015 10.1039/C4NR05878J 1791   J. Phys. Chem. Solids Hwang 68 2007 10.1016/j.jpcs.2006.10.007 182   Electrochim. Acta Lv 176 2015 10.1016/j.electacta.2015.07.059 533   ACS Sustainable Chem. Eng. Xu 3 2015 10.1021/acssuschemeng.5b00350 1650   Int. J. Hydrogen Energy Kumaresan 44 2019 10.1016/j.ijhydene.2019.08.044 25918   Carbon Shimada 43 2005 10.1016/j.carbon.2004.11.044 1049   Mater. Technol. Arie 34 2019 10.1080/10667857.2019.1586087 515   Mater. Lett. Kumar 218 2018 10.1016/j.matlet.2018.02.017 181   Chem. Soc. Rev. Wu 47 2018 10.1039/C6CS00915H 1822   Chemosphere Veldevi 288 2022 10.1016/j.chemosphere.2021.132438 132438   J. Appl. Phys. Shimodaira 94 2002 10.1063/1.1487434 902   Pure Appl. Chem. Thommes 87 2015 10.1515/pac-2014-1117 1051   J. Saudi Chem. Soc. Ahmed 22 2018 10.1016/j.jscs.2018.03.002 993   Appl. Catal., A Storck 174 1998 10.1016/S0926-860X(98)00164-1 137   ChemSusChem Wahid 11 2018 10.1002/cssc.201701664 506   Carbon Lett. Vu 29 2019 10.1007/s42823-019-00010-6 81   J. Mater. Chem. A Guan 3 2015 10.1039/C5TA01446H 7849   Mater. Renewable Sustainable Energy Lee 3 2014 10.1007/s40243-014-0022-9 22   Mater. Lett. Kumaresan 276 2020 10.1016/j.matlet.2020.128218 128218   ACS Omega Yokokura 5 2020 10.1021/acsomega.0c02389 19715   J. Mater. Chem. A Wang 5 2017 10.1039/C6TA08742F 2411   AAAS Res. Li 2020 8685436   Mater. Today Chem. Al Hassan 11 2019 10.1016/j.mtchem.2018.11.006 225   Carbon Wang 47 2009 10.1016/j.carbon.2009.03.053 2049   ACS Nano Wu 5 2011 10.1021/nn2006249 5463   Sci. Rep. Cheng 7 2017 10.1038/s41598-017-14504-8 14782   J. Mater. Chem. A Li 2 2012 10.1039/C4TA03281K 16617   J. Electrochem. Soc. Andersson 148 2001 10.1149/1.1397771 A1100   J. Electrochem. Soc. Zhang 166 2019 10.1149/2.0701903jes A5489   Electrochim. Acta Zheng 88 2013 10.1016/j.electacta.2012.09.119 225   Adv. Mater. Yang 22 2010 10.1002/adma.200902795 838   Analyst Bandarenka 138 2013 10.1039/c3an00791j 5540
| Item Type: | Article | 
|---|---|
| Subjects: | Chemistry > Analytical Chemistry | 
| Domains: | Chemistry | 
| Depositing User: | Mr IR Admin | 
| Date Deposited: | 19 Sep 2024 07:04 | 
| Last Modified: | 19 Sep 2024 07:04 | 
| URI: | https://ir.vistas.ac.in/id/eprint/6466 | 



 Dimensions
 Dimensions Dimensions
 Dimensions