Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite

Bupesh Raja, V. K. and Parande, Gururaj and Kannan, Sathish and Sonawwanay, Puskaraj D. and Selvarani, V. and Ramasubramanian, S. and Ramachandran, D. and Jeremiah, Abishek and Akash Sundaraeswar, K. and Satheeshwaran, S. and Gupta, Manoj (2023) Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite. Metals, 13 (5). p. 850. ISSN 2075-4701

[thumbnail of Influence_of_Laser_Treatment_Medium_on_the_Surface.pdf] Archive
Influence_of_Laser_Treatment_Medium_on_the_Surface.pdf

Download (13MB)

Abstract

Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite V. K. Bupesh Raja Sathyabama Institute of Science and Technology, Chennai 600119, India http://orcid.org/0000-0002-8929-1814 Gururaj Parande Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore http://orcid.org/0000-0002-7715-5436 Sathish Kannan Department of Mechanical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates Puskaraj D. Sonawwanay School of Mechanical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, India http://orcid.org/0000-0002-8985-8622 V. Selvarani Department of Chemistry, St. Joseph’s Institute of Technology, Chennai 600119, India S. Ramasubramanian Department of Automobile Engineering, Vels Institute of Science, Technology and Advanced Studies, Chennai 600117, India D. Ramachandran Sathyabama Institute of Science and Technology, Chennai 600119, India Abishek Jeremiah Sathyabama Institute of Science and Technology, Chennai 600119, India K. Akash Sundaraeswar Sathyabama Institute of Science and Technology, Chennai 600119, India S. Satheeshwaran Sathyabama Institute of Science and Technology, Chennai 600119, India Manoj Gupta Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore http://orcid.org/0000-0002-2248-8700

In this study, a Mg3Zn alloy and a Mg3Zn1HA nanocomposite were fabricated through disintegrated melt deposition, followed by the hot extrusion process. The specimens were subjected to fiber laser surface modification in air and demineralized water (DM) medium to determine the influence of the laser treatment medium on the microstructure, microhardness, grain size, and surface topography. During the laser treatment, the samples under the water medium produced a lower surface roughness when compared with the air medium. The atomic force microscope (AFM) surface topography scan showed the presence of surface modifications caused by the presence of nanohydroxyapatite (nHA) in the matrix, resulting in a 367.4% and 632.4% increase in the surface roughness (Ra) in the Mg3Zn1HA nanocomposite when compared with the Mg3Zn alloy in water and air media, respectively.
04 26 2023 850 met13050850 https://creativecommons.org/licenses/by/4.0/ 10.3390/met13050850 https://www.mdpi.com/2075-4701/13/5/850 https://www.mdpi.com/2075-4701/13/5/850/pdf Shadanbaz Calcium phosphate coatings on magnesium alloys for biomedical applications: A review Acta Biomater. 2012 10.1016/j.actbio.2011.10.016 8 20 Liu Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review Scanning 2018 10.1155/2018/9216314 2018 9216314 Biber Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation Case Rep. Orthop. 2016 2016 9673174 Thormann The biocompatibility of degradable magnesium interference screws: An experimental study with sheep BioMed Res. Int. 2015 10.1155/2015/943603 2015 943603 Bai Antibacterial and Antioxidant Effects of Magnesium Alloy on Titanium Dental Implants Comput. Math. Methods Med. 2022 10.1155/2022/6537676 2022 6537676 Zhao Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head Biomaterials 2016 10.1016/j.biomaterials.2015.11.038 81 84 Kumar Challenges and opportunities for biodegradable magnesium alloy implants Mater. Technol. 2017 10.1080/10667857.2017.1377973 33 153 Zhu Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing Int. J. Nanomed. 2018 10.2147/IJN.S154260 13 1881 Liu Improving ductility of AlSi7Mg alloy by casting-forging process: Effect of deformation degree J. Mater. Res. Technol. 2021 10.1016/j.jmrt.2021.07.162 14 2571 Zhu Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats J. Orthop. Transl. 2022 33 153 Renish An insight into welding of magnesium and its alloys—A review AIP Conf. Proc. 2022 10.1063/5.0095699 2460 050007 Parande Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites J. Mech. Behav. Biomed. Mater. 2019 10.1016/j.jmbbm.2019.103584 103 103584 Esmaily Fundamentals and advances in magnesium alloy corrosion Prog. Mater. Sci. 2017 10.1016/j.pmatsci.2017.04.011 89 92 Prasad The role and significance of Magnesium in modern day research-A review J. Magnes. Alloy. 2021 10.1016/j.jma.2021.05.012 10 1 Saji Electrophoretic (EPD) coatings for magnesium alloys J. Ind. Eng. Chem. 2021 10.1016/j.jiec.2021.08.002 103 358 Gedvilas Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon Phys. Chem. Chem. Phys. 2018 10.1039/C7CP08458G 20 12166 Li Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: An in vitro and in vivo study Acta Biomater. 2018 10.1016/j.actbio.2017.10.033 65 486 Patel Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V Surf. Coat. Technol. 2018 10.1016/j.surfcoat.2018.05.032 349 816 Wei Anti-corrosion behaviour of superwetting structured surfaces on Mg-9Al-1Zn magnesium alloy Appl. Surf. Sci. 2019 10.1016/j.apsusc.2019.03.286 483 1017 Rakesh Laser surface melting of Mg-Zn-Dy alloy for better wettability and corrosion resistance for biodegradable implant applications Appl. Surf. Sci. 2019 10.1016/j.apsusc.2019.02.167 480 70 Manne Surface design of Mg-Zn alloy temporary orthopaedic implants: Tailoring wettability and biodegradability using laser surface melting Surf. Coat. Technol. 2018 10.1016/j.surfcoat.2018.05.017 347 337 Melia Investigation of critical processing parameters for laser surface processing of AZ31B-H24 Surf. Coat. Technol. 2017 10.1016/j.surfcoat.2017.06.059 325 157 Ge Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid Surf. Coat. Technol. 2016 10.1016/j.surfcoat.2016.12.093 310 157 Mondal Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy Surf. Coat. Technol. 2008 10.1016/j.surfcoat.2007.11.030 202 3187 Zhang Effect of laser surface melting on friction and wear behavior of AM50 magnesium alloy Surf. Coat. Technol. 2008 10.1016/j.surfcoat.2007.11.023 202 3175 Li Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys Surf. Coat. Technol. 2019 10.1016/j.surfcoat.2019.124964 378 124964 Liu Microstructure analysis of magnesium alloy melted by laser irradiation Appl. Surf. Sci. 2005 10.1016/j.apsusc.2005.03.110 252 1723 Ge Wear behavior of Mg-3Al-1Zn alloy subjected to laser shock peening Surf. Coat. Technol. 2018 10.1016/j.surfcoat.2018.01.043 337 501 Wang Surface modification of NiTi alloy by ultrashort pulsed laser shock peening Surf. Coat. Technol. 2020 10.1016/j.surfcoat.2020.125899 394 125899 Cao In vitro degradation assessment of calcium fluoride-doped hydroxyapatite coating prepared by pulsed laser deposition Surf. Coat. Technol. 2021 10.1016/j.surfcoat.2021.127177 416 127177 Asl Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro Surf. Coat. Technol. 2019 10.1016/j.surfcoat.2019.02.052 363 236 Cotell Pulsed laser deposition of biocompatible thin films J. Appl. Biomater. 1992 10.1002/jab.770030204 8 87 Kalakuntla Laser patterned hydroxyapatite surfaces on AZ31B magnesium alloy for consumable implant applications Materialia 2020 10.1016/j.mtla.2020.100693 11 100693 Goto Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone J. Orthop. Sci. 2001 10.1007/s007760170013 6 444 Vladescu Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings Appl. Surf. Sci. 2015 10.1016/j.apsusc.2015.05.059 354 373 Praveen Influence of equal channel angular pressing and laser shock peening on fatigue behaviour of AM80 alloy Surf. Coat. Technol. 2019 10.1016/j.surfcoat.2019.03.072 369 221 Porro Efficacy of laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response Surf. Coat. Technol. 2019 384 125320 Zhang Ablated surface morphology evolution of SiCp/Al composites irradiated by a nanosecond laser Surf. Coat. Technol. 2021 10.1016/j.surfcoat.2021.127973 429 127973 Majumdar Laser surface engineering of a magnesium alloy with Al+Al2O3 Surf. Coat. Technol. 2004 10.1016/S0257-8972(03)00816-8 179 297 Obeidi CO2 laser polishing of laser-powder bed fusion produced AlSi10Mg parts Surf. Coat. Technol. 2021 10.1016/j.surfcoat.2021.127291 419 127291 Zhang Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy Surf. Coat. Technol. 2010 10.1016/j.surfcoat.2010.03.015 204 3947 BupeshRaja Studies on surface morphology of under liquid laser ablated magnesium alloy Mater. Today Proc. 2021 10.1016/j.matpr.2021.01.426 46 1071 Kruusing Underwater and water-assisted laser processing: Part 1—General features, steam cleaning and shock processing Opt. Lasers Eng. 2004 10.1016/S0143-8166(02)00142-2 41 307 Kruusing Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods Opt. Lasers Eng. 2004 10.1016/S0143-8166(02)00143-4 41 329 Sano Residual stress improvement in metal surface irradiation Nucl. Instrum. Methods Phys. Res. B 1997 10.1016/S0168-583X(96)00551-4 121 432 Itina On Nanoparticle Formation by Laser Ablation in Liquids J. Phys. Chem. C 2010 10.1021/jp1090944 115 5044 Trtica Laser-assisted surface modification of Ti-implant in air and water environment Appl. Surf. Sci. 2018 10.1016/j.apsusc.2017.09.185 428 669 Wang Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid Appl. Phys. Lett. 2005 10.1063/1.2132069 87 201913 Torres High Power Diode Laser (HPDL) surface treatments to improve the mechanical properties and the corrosion behaviour of Mg-Zn-Ca alloys for biodegradable implants Surf. Coat. Technol. 2020 10.1016/j.surfcoat.2020.126314 402 126314 Liu Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy Appl. Surf. Sci. 2015 10.1016/j.apsusc.2015.03.067 343 133 Zhang Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing Surf. Coat. Technol. 2019 10.1016/j.surfcoat.2019.01.063 362 176 Riveiro Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length Surf. Coat. Technol. 2021 10.1016/j.surfcoat.2021.127802 427 127802 Guan Boiling effect in crater development on magnesium surface induced by laser melting Surf. Coat. Technol. 2014 10.1016/j.surfcoat.2014.05.002 252 168 10.2351/1.5062136 Voisiat, B., Gedvilas, M., and Raciukaitis, G. (2010, January 26–30). Picosecond Laser 4-beam interference ablation of metal films for microstructuring. Proceedings of the 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Anaheim, CA, USA. Voisiat Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring Phys. Procedia 2011 10.1016/j.phpro.2011.03.113 12 116 Voisiat Two complementary ways of thin-metal-film patterning using laser beam interference and direct ablation J. Micromech. Microeng. 2013 10.1088/0960-1317/23/9/095034 23 095034 Wang Characterization of the underwater welding arc bubble through a visual sensing method J. Mater. Process. Technol. 2017 10.1016/j.jmatprotec.2017.08.019 251 95 Amendola What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2012 10.1039/C2CP42895D 15 3027 Zhigilei Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion J. Phys. Chem. C 2009 10.1021/jp902294m 113 11892 Bonse Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures Laser Photon-Rev. 2020 10.1002/lpor.202000215 14 2000215 10.3390/met11101569 Rehman, A.U., Mahmood, M.A., Pitir, F., Salamci, M.U., Popescu, A.C., and Mihailescu, I.N. (2021). Mesoscopic computational fluid dynamics modelling for the laser-melting deposition of AISI 304 stainless steel single tracks with experimental correlation: A novel study. Metals, 11. Mallea Laser-Induced thermocapillary convective flows: A new approach for noncontact actuation at microscale at the fluid/gas interface IEEE/ASME Trans. Mechatron. 2016 10.1109/TMECH.2016.2639821 22 693 Zhou, X., Zhong, Y., Shen, Z., and Liu, W. (2018). The surface-tension-driven Benard conventions and unique sub-grain cellular microstructures in 316L steel selective laser melting. arXiv. Swain, A., and Bhattacharya, A. (2023, April 20). Effect of Marangoni and Natural Convection during Laser Melting. Available online: https://istam.iitkgp.ac.in/resources/2019/proceedings/Paper_Full/28fullpaper.pdf. Ghosh Critical assessment and thermodynamic modeling of Mg–Zn, Mg–Sn, Sn–Zn and Mg–Sn–Zn systems Calphad 2011 10.1016/j.calphad.2011.10.007 36 28 10.3390/nano11041020 Nakhoul, A., Maurice, C., Agoyan, M., Rudenko, A., Garrelie, F., Pigeon, F., and Colombier, J.-P. (2021). Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nanomaterials, 11. Ho Laser surface modification of AZ31B Mg alloy for bio-wettability J. Biomater. Appl. 2014 10.1177/0885328214551156 29 915

Item Type: Article
Subjects: Mechanical Engineering > Mechanical Measurements
Domains: Mechanical Engineering
Depositing User: Mr IR Admin
Date Deposited: 18 Sep 2024 06:35
Last Modified: 16 Mar 2025 15:08
URI: https://ir.vistas.ac.in/id/eprint/6320

Actions (login required)

View Item
View Item