Hari, Sowmya and Ramaswamy, Karthiyayini and Sivalingam, Uma and Ravi, Ashwini and Dhanraj, Suresh and Jagadeesan, Manjunathan (2024) Progress and prospects of biopolymers production strategies. Physical Sciences Reviews, 9 (4). pp. 1811-1836. ISSN 2365-659X
![[thumbnail of Progress and prospects of biopolymers production strategies.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
Progress and prospects of biopolymers production strategies.pdf
Download (480kB)
Abstract
Progress and prospects of biopolymers production strategies Sowmya Hari Department of BioEngineering , Vels Institute of Science, Technology and Advanced Studies (VISTAS) , Chennai , 600117 , Tamil Nadu , India Karthiyayini Ramaswamy Department of Botany , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , Tamil Nadu , India Uma Sivalingam PG Department of Biotechnology , Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) , Chennai , 600106 , Tamil Nadu , India Ashwini Ravi PG Department of Biotechnology , Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) , Chennai , 600106 , Tamil Nadu , India Suresh Dhanraj Department of Microbiology , Vels Institute of Science, Technology and Advanced Studies (VISTAS) , Chennai , 600117 , Tamil Nadu , India Manjunathan Jagadeesan Department of Biotechnology , Vels Institute of Science, Technology and Advanced Studies (VISTAS) , Chennai , 600117 , Tamil Nadu , India Abstract
In recent decades, biopolymers have garnered significant attention owing to their aptitude as an environmentally approachable precursor for an extensive application. In addition, due to their alluring assets and widespread use, biopolymers have made significant strides in their production based on various sources and forms. This review focuses on the most recent improvements and breakthroughs that have been made in the manufacturing of biopolymers, via sections focusing the most frequented and preferred routes like micro-macro, algae apart from focusing on microbials routes with special attention to bacteria and the synthetic biology avenue of biopolymer production. For ensuring the continued growth of the global polymer industry, promising research trends must be pursued, as well as methods for overcoming obstacles that arise in exploiting the beneficial properties exhibited by a variety of biopolymers.
04 16 2024 03 28 2023 04 01 2024 1811 1836 10.1515/psr-2022-0215 10.1515/psr-2022-0215 https://www.degruyter.com/document/doi/10.1515/psr-2022-0215/html https://www.degruyter.com/document/doi/10.1515/psr-2022-0215/pdf https://www.degruyter.com/document/doi/10.1515/psr-2022-0215/xml 10.3390/polym13172878 Bari, E, Sistani, A, Morrell, JJ, Pizzi, A, Akbari, MR, Ribera, J. Current strategies for the production of sustainable biopolymer composites. Polymers 2021;13:2878. https://doi.org/10.3390/polym13172878. 10.1016/j.jenvman.2017.09.083 Santiago, RP, Antonio, S, Alba, AP, Bernabe, AF. Challenges of scaling-up PHA production from waste streams. A review. J Environ Manag 2018;205:215–30. https://doi.org/10.1016/j.jenvman.2017.09.083. 10.1016/j.jclepro.2021.126278 Xiang, Y, Li, C, Hao, H, Tong, Y, Chen, W, Zhao, G, et al.. Performances of biodegradable polymer composites with functions of nutrient slow-release and water retention in simulating heavy metal contaminated soil: biodegradability and nutrient release characteristics. J Clean Prod 2021;294:126278. https://doi.org/10.1016/j.jclepro.2021.126278. 10.1016/B978-0-12-818228-4.00010-1 Namboodiri, MT, Pakshirajan, K. Valorization of waste biomass for chitin and chitosan production. In: Waste biorefinery. Netherlands: Elsevier; 2020:241–66 pp. 10.1080/87559129.2020.1733008 Picot-Allain, MCN, Ramasawmy, B, Emmambux, MN. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: a review. Food Rev Int 2022;38:282–312. https://doi.org/10.1080/87559129.2020.1733008. 10.1007/s10856-016-5776-4 Shishatskaya, EI, Nikolaeva, ED, Vinogradova, ON, Volova, TG. Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci Mater Med 2016;27:165. https://doi.org/10.1007/s10856-016-5776-4. 10.1007/s13762-012-0070-6 Sandhya, M, Aravind, J, Kanmani, P. Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. Int J Environ Sci Technol 2013;10:47–54. https://doi.org/10.1007/s13762-012-0070-6. 10.1007/978-3-319-48439-6_18 Aravind, J, Sandhya, M. Optimization of media components for production of polyhydroxyalkanoates by Ralstonia eutropha using paddy straw as cheap substrate. In: Prashanthi, M, Sundaram, R, Jeyaseelan, A, Kaliannan, T, editors. Bioremediation and sustainable technologies for cleaner environment. Environmental science and engineering. Cham, Switzerland: Springer; 2017:239–51 pp. 10.1080/10242422.2020.1789112 Priyanka, K, Umesh, M, Thazeem, B, Preethi, K. Polyhydroxyalkanoate biosynthesis and characterization from optimized medium utilizing distillery effluent using Bacillus endophyticus MTCC 9021: a statistical approach. Biocatal Biotransform 2021;39:16–28. https://doi.org/10.1080/10242422.2020.1789112. 10.1016/j.jclepro.2022.132267 Umesh, M, Shanmugam, S, Kikas, T, Lan Chi, NTL, Pugazhendhi, A. Progress in bio-based biodegradable polymer as the effective replacement for the engineering applicators. J Clean Prod 2022;362:132267. https://doi.org/10.1016/j.jclepro.2022.132267. 10.1007/s13762-017-1416-x Kanmani, P, Yuvapriya, S. Exopolysaccharide from bacillus sp. YP03: its properties and application as a flocculating agent in wastewater treatment. Int J Environ Sci Technol 2018;15:2551–60. https://doi.org/10.1007/s13762-017-1416-x. 10.1016/j.biortech.2017.03.119 Kanmani, P, Aravind, J, Kamaraj, M, Sureshbabu, P, Karthikeyan, S. Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Bioresour Technol 2017;242:295–303. https://doi.org/10.1016/j.biortech.2017.03.119. 10.1007/s11248-017-0022-5 Schmidt, K, Schmidtke, J, Mast, Y, Waldvogel, E, Wohlleben, W, Klemke, F, et al.. Comparative statistical component analysis of transgenic, cyanophycin-producing potatoes in greenhouse and field trials. Transgenic Res 2017;26:529–39. https://doi.org/10.1007/s11248-017-0022-5. 10.1007/s00253-012-4543-9 Xu, C, Liu, L, Zhang, Z, Jin, D, Qiu, J, Chen, M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl Microbiol Biotechnol 2013;97:519–39. https://doi.org/10.1007/s00253-012-4543-9. 10.1016/j.eti.2022.102872 Khanra, A, Vasistha, S, Rai, MP, Cheah, WY, Khoo, KS, Chew, KW, et al.. Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock: circular bioeconomy approach. Environ Technol Innov 2022;28:102872. https://doi.org/10.1016/j.eti.2022.102872. 10.1016/j.biotechadv.2022.107999 Mastropetros, SG, Pispas, K, Zagklis, D, Ali, SS, Kornaros, M. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: recent advances. Biotechnol Adv 2022;60:107999. https://doi.org/10.1016/j.biotechadv.2022.107999. 10.1016/j.chemosphere.2021.133178 Mal, N, Satpati, G, Raghunathan, S, Davoodbasha, M. Current strategies on algae-based biopolymer production and scale-up. Chemosphere 2022;289:133178. https://doi.org/10.1016/j.chemosphere.2021.133178. 10.1016/j.joi.2017.08.007 Aria, M, Cuccurullo, C. bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr 2017;11:959–75. https://doi.org/10.1016/j.joi.2017.08.007. 10.1016/j.biortech.2021.124868 Kartik, A, Akhil, D, Lakshmi, D, Panchamoorthy Gopinath, KP, Arun, J, Sivaramakrishnan, R, et al.. A critical review on production of biopolymers from algae biomass and their applications. Bio Technol 2021;329:124868. https://doi.org/10.1016/j.biortech.2021.124868. 10.1016/j.chemosphere.2021.132589 Khan, MJ, Singh, N, Mishra, S, Ahirwar, A, Bast, F, Varjani, S, et al.. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: updates, challenges and innovations. Chemosphere 2022;288:132589. https://doi.org/10.1016/j.chemosphere.2021.132589. 10.1016/j.algal.2018.05.016 Costa, SS, Miranda, AL, Assis, DJ, Souza, CO, de Morais, MG, Costa, JAV, et al.. Efficacy of spirulina sp. polyhydroxyalkanoates extraction methods and influence on polymer properties and composition. Algal Res 2018;33:231–8. https://doi.org/10.1016/j.algal.2018.05.016. 10.1016/j.bcab.2019.101358 Roja, K, Sudhakar, DRR, Anto, S, Mathimani, T. Extraction and characterization of polyhydroxyalkanoates from marine green alga and cyanobacteria. Biocatal Agric Biotechnol 2019;22:101358. https://doi.org/10.1016/j.bcab.2019.101358. 10.3390/coatings10020120 Morales-Jiménez, M, Gouveia, L, Yáñez-Fernández, J, Castro-Muñoz, R, Barragán-Huerta, BE. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings 2020;10:120. https://doi.org/10.3390/coatings10020120. 10.3390/polym10070731 Jiang, G, Johnston, B, Townrow, DE, Radecka, I, Koller, M, Chaber, P, et al.. Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers 2018;10:731. https://doi.org/10.3390/polym10070731. 10.1021/acssuschemeng.7b03096 Dubey, S, Bharmoria, P, Gehlot, PS, Agrawal, V, Kumar, A, Mishra, S. 1-Ethyl- 3-methylimidazolium diethylphosphate based extraction of bioplastic “polyhydroxyalkanoates” from Bacteria: green and sustainable approach. ACS Sustainable Chem Eng 2018;6:766–73. https://doi.org/10.1021/acssuschemeng.7b03096. 10.1021/acs.chemrev.6b00594 Wang, B, Qin, L, Mu, T, Xue, Z, Gao, G. Are ionic liquids chemically stable? Chem Rev 2017;117:7113–31. https://doi.org/10.1021/acs.chemrev.6b00594. 10.1007/s10965-017-1307-3 Leong, YK, Show, PL, Lan, JCW, Loh, HS, Yap, YJ, Ling, TC. Extraction and purification of polyhydroxyalkanoates (PHAs): application of Thermoseparating aqueous two-phase extraction. J Polym Res 2017;24:1–10. https://doi.org/10.1007/s10965-017-1307-3. 10.1007/s12257-008-0119-z Divyashree, MS, Shamala, TR, Rastogi, NK. Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioproc Eng 2009;14:482–9. https://doi.org/10.1007/s12257-008-0119-z. 10.1016/j.ijbiomac.2019.06.023 Faidi, A, Lassoued, MA, Becheikh, MEH, Touati, M, Stumbé, JF, Farhat, F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: microspheres preparation, characterization and in vitro release study. Int J Biol Macromol 2019;136:386–94. https://doi.org/10.1016/j.ijbiomac.2019.06.023. 10.1007/s10811-016-1043-9 Flórez-Fernández, N, López-García, M, González-Muñoz, MJ, Vilariño, JML, Domínguez, H. Ultrasound-assisted extraction of fucoidan from Sargassum muticum. J Appl Phycol 2017;29:1553–61. https://doi.org/10.1007/s10811-016-1043-9. 10.1016/j.carbpol.2021.118588 Torres, MD, Flórez-Fernández, N, Domínguez, H. Chondrus crispus treated with ultrasound as a polysaccharides source with improved antitumoral potential. Carbohydr Polym 2021;273:118588. https://doi.org/10.1016/j.carbpol.2021.118588. 10.1007/s10811-017-1342-9 Hmelkov, AB, Zvyagintseva, TN, Shevchenko, NM, Rasin, AB, Ermakova, SP. Ultrasound-assisted extraction of polysaccharides from brown alga Fucus evanescens structure and biological activity of the new fucoidan fractions. J Appl Phycol 2018;30:2039–46. https://doi.org/10.1007/s10811-017-1342-9. 10.1088/1757-899X/464/1/012007 Essa, H, Fleita, D, Rifaat, D, Samy, S, El-Sayed, M. Towards optimizing the conventional and ultrasonic-assisted extraction of sulfated polysaccharides from marine algae. IOP Conf Ser: Mater Sci Eng 2018;464:012007. https://doi.org/10.1088/1757-899x/464/1/012007. 10.1016/j.ijbiomac.2018.11.232 Flórez-Fernández, N, Domínguez, H, Torres, MD. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int J Biol Macromol 2019;124:451–9. https://doi.org/10.1016/j.ijbiomac.2018.11.232. 10.1016/j.carbpol.2019.115421 Mirzadeh, M, Arianejad, MR, Khedmat, L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: a review. Carbohydr Polym 2020;229:115421. https://doi.org/10.1016/j.carbpol.2019.115421. 10.1016/j.algal.2020.102081 Ponthier, E, Domínguez, H, Torres, MD. The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. Algal Res 2020;51:102081. https://doi.org/10.1016/j.algal.2020.102081. 10.1016/j.foodhyd.2021.107070 Bianchi, A, Sanz, V, Domínguez, H, Torres, MD. Valorisation of the industrial hybrid carrageenan extraction wastes using eco-friendly treatments. Food Hydrocolloids 2022;122:107070. https://doi.org/10.1016/j.foodhyd.2021.107070. 10.1016/j.carbpol.2020.116830 Barral-Martínez, M, Flórez-Fernández, N, Domínguez, H, Torres, MD. Tailoring hybrid carrageenans from Mastocarpus stellatus red seaweed using microwave hydrodiffusion and gravity. Carbohydr Polym 2020;248:116830. https://doi.org/10.1016/j.carbpol.2020.116830. 10.1016/j.seppur.2017.06.055 Gereniu, CRN, Saravana, PS, Chun, BS. Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Sep Purif Technol 2018;196:309–17. https://doi.org/10.1016/j.seppur.2017.06.055. 10.1016/j.jclepro.2018.07.151 Saravana, PS, Cho, YN, Woo, HC, Chun, BS. Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J Clean Prod 2018;198:1474–84. https://doi.org/10.1016/j.jclepro.2018.07.151. 10.3390/molecules26164726 Flórez-Fernández, N, Domínguez, H, Torres, MD. Functional features of alginates recovered from Himanthalia elongata using subcritical water extraction. Molecules 2021;26:4726. https://doi.org/10.3390/molecules26164726. 10.1016/j.biortech.2021.125671 Horue, M, Berti, IRR, Cacicedo, ML, Castro, GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications-a review. Bioresour Technol 2021;340:125671. https://doi.org/10.1016/j.biortech.2021.125671. 10.1080/09593330.2019.1673827 Murujew, O, Whitton, R, Kube, M, Fan, L, Roddick, F, Jefferson, B, et al.. Recovery and reuse of alginate in an immobilized algae reactor. Environ Technol 2021;42:1521–30. https://doi.org/10.1080/09593330.2019.1673827. 10.3390/nano7090257 Moniri, M, Moghaddam, AB, Azizi, S, Rahim, RA, Ariff, AB, Saad, WZ, et al.. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 2017;7:257. https://doi.org/10.3390/nano7090257. 10.1016/j.ijbiomac.2017.05.171 Picheth, GF, Pirich, CL, Sierakowski, MR, Woehl, MA, Sakakibara, CN, de Souza, CF, et al.. Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 2017;104:97–106. https://doi.org/10.1016/j.ijbiomac.2017.05.171. 10.25061/2595-3931/IJAMB/2018.v1i2.20 Horue, M, Cacicedo, ML, Castro, GR. New insights into bacterial cellulose materials: production and modification strategies. Int J Adv Med Biotechnol 2018;1:44–9. https://doi.org/10.25061/2595-3931/ijamb/2018.v1i2.20. 10.3390/nano9101352 Gorgieva, S, Trček, J. Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 2019;9:1352. https://doi.org/10.3390/nano9101352. 10.1007/s10570-019-02307-1 Hussain, Z, Sajjad, W, Khan, T, Wahid, F. Production of bacterial cellulose from industrial wastes: a review. Cellulose 2019;26:2895–911. https://doi.org/10.1007/s10570-019-02307-1. 10.1016/j.biortech.2018.12.042 Kumar, V, Sharma, DK, Bansal, V, Mehta, D, Sangwan, RS, Yadav, SK. Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour Technol 2019;275:430–3. https://doi.org/10.1016/j.biortech.2018.12.042. 10.1039/D0RA04366D Patel, J, Maji, B, Moorthy, NSHN, Maiti, S. Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Adv 2020;10:27103–36. https://doi.org/10.1039/d0ra04366d. 10.1016/j.jece.2020.104702 Elella, MHAA, Goda, ES, Gab-Allah, MA, Hong, SE, Pandit, B, Lee, S, et al.. Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng 2021;9:104702. https://doi.org/10.1016/j.jece.2020.104702. 10.4025/actascibiolsci.v41i1.43661 Gondim, TS, Pereira, RG, Fiaux, SB. Xanthan gum production by Xanthomonas axonopodis pv. mangiferaeindicae from glycerin of biodiesel in different media and addition of glucose. Acta Sci Biol Sci 2019;41:e43661. https://doi.org/10.4025/actascibiolsci.v41i1.43661. 10.1007/s12010-018-2765-8 da Silva, JA, Cardoso, LG, de Jesus Assis, D, Gomes, GVP, Oliveira, MBPP, de Souza, CO, et al.. Xanthan gum production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from lignocellulosic agroindustrial wastes. Appl Biochem Biotechnol 2018;186:750–63. https://doi.org/10.1007/s12010-018-2765-8. 10.1016/j.foodchem.2020.128860 Zhang, S, Wang, J, Jiang, H. Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem 2021;346:128860. https://doi.org/10.1016/j.foodchem.2020.128860. 10.1016/j.carbpol.2011.08.094 Aman, A, Siddiqui, NN, Qader, SAU. Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydr Polym 2012;87:910–5. https://doi.org/10.1016/j.carbpol.2011.08.094. 10.1002/jsfa.6305 Das, D, Goyal, A. Characterization and biocompatibility of glucan: a safe food additive from probiotic Lactobacillus plantarum DM5. J Sci Food Agric 2014;94:683–90. https://doi.org/10.1002/jsfa.6305. 10.1021/jf902068t Bounaix, MS, Gabriel, V, Morel, S, Robert, H, Rabier, P, Remaud-Siméon, M, et al.. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agric Food Chem 2009;57:10889–97. https://doi.org/10.1021/jf902068t. 10.1016/j.jbiotec.2012.06.037 Leemhuis, H, Pijning, T, Dobruchowska, JM, van Leeuwen, SS, Kralj, S, Dijkstra, BW, et al.. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 2013;163:250–72. https://doi.org/10.1016/j.jbiotec.2012.06.037. 10.1007/s00253-015-7172-2 Zannini, E, Waters, DM, Coffey, A, Arendt, EK. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 2016;100:1121–35. https://doi.org/10.1007/s00253-015-7172-2. 10.1016/j.biotechadv.2016.05.002 Öner, ET, Hernández, L, Combie, J. Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv 2016;34:827–44. https://doi.org/10.1016/j.biotechadv.2016.05.002. 10.1007/s12088-011-0148-8 Patel, S, Majumder, A, Goyal, A. Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 2012;52:3–12. https://doi.org/10.1007/s12088-011-0148-8. 10.5772/50839 Harutoshi, T. Exopolysaccharides of lactic acid bacteria for food and colon health applications. In: Lactic acid bacteria-R & D for food, health and livestock purposes. London: IntechOpen; 2013. 10.1080/10408398.2010.540360 Ahmed, Z, Wang, Y, Ahmad, A, Khan, ST, Nisa, M, Ahmad, H, et al.. Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 2013;53:422–34. https://doi.org/10.1080/10408398.2010.540360. Dailin, DJ, Elsayed, EA, Othman, NZ, Malek, RA, Ramli, SO, Sarmidi, MR, et al.. Development of cultivation medium for high yield kefiran production by Lactobacillus kefiranofaciens. Int J Pharm Pharmaceut Sci 2015;7:159–63. Jenab, A, Roghanian, R, Emtiazi, G. Encapsulation of platelet in kefiran polymer and detection of bioavailability of immobilized platelet in probiotic kefiran as a new drug for surface bleeding. J Med Bacteriol 2015;4:45–55. 10.1016/j.foodchem.2012.11.142 Zajšek, K, Goršek, A, Kolar, M. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food Chem 2013;139:970–7. https://doi.org/10.1016/j.foodchem.2012.11.142. 10.1016/j.carbpol.2014.05.073 Notararigo, S, de Las Casas-Engel, M, de Palencia, PF, Corbí, AL, López, P. Immunomodulation of human macrophages and myeloid cells by 2-substituted (1-3)-β-d-glucan from P. parvulus 2.6. Carbohydr Polym 2014;112:109–13. https://doi.org/10.1016/j.carbpol.2014.05.073. 10.1016/j.ijfoodmicro.2015.04.031 Juvonen, R, Honkapää, K, Maina, NH, Shi, Q, Viljanen, K, Maaheimo, H, et al.. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). Int J Food Microbiol 2015;207:109–18. https://doi.org/10.1016/j.ijfoodmicro.2015.04.031. 10.1016/j.fm.2009.08.006 Nieto-Arribas, P, Seseña, S, Poveda, JM, Palop, L, Cabezas, L. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol 2010;27:85–93. https://doi.org/10.1016/j.fm.2009.08.006. 10.1111/j.1574-6968.2010.02067.x Bounaix, MS, Robert, H, Gabriel, V, Morel, S, Remaud-Siméon, M, Gabriel, B, et al.. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol Lett 2010;311:18–26. https://doi.org/10.1111/j.1574-6968.2010.02067.x. 10.1016/j.carbpol.2013.07.072 Mende, S, Peter, M, Bartels, K, Dong, T, Rohm, H, Jaros, D. Concentration dependent effects of dextran on the physical properties of acid milk gels. Carbohydr Polym 2013;98:1389–96. https://doi.org/10.1016/j.carbpol.2013.07.072. Ramalingam, C, Priya, J, Mundra, S. Applications of microbial polysaccharides in food industry. Int J Pharmaceut Sci Rev Res 2014;27:322–4. 10.1007/s00217-015-2543-6 Hermann, M, Kronseder, K, Sorgend, J, Ua-Arak, T, Vogel, RF. Functional properties of water kefiran and its use as a hydrocolloid in baking. Eur Food Res Tech 2016;242:337–44. https://doi.org/10.1007/s00217-015-2543-6. 10.1016/j.lwt.2016.05.010 Paiva, IM, Steinberg, RS, Lula, IS, Souza-Fagundes, EM, Mendes, TO, Bell, MJV, et al.. Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications. LWT-Food Sci Technol 2016;72:390–8. https://doi.org/10.1016/j.lwt.2016.05.010. 10.1016/j.jbiosc.2011.02.005 Izawa, N, Serata, M, Sone, T, Omasa, T, Ohtake, H. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng 2011;111:665–70. https://doi.org/10.1016/j.jbiosc.2011.02.005. 10.1016/j.actbio.2013.12.019 Dicker, KT, Gurski, LA, Pradhan-Bhatt, S, Witt, RL, Farach-Carson, MC, Jia, X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014;10:1558–70. https://doi.org/10.1016/j.actbio.2013.12.019. 10.1007/s00253-011-3260-0 Atlić, A, Koller, M, Scherzer, D, Kutschera, C, Grillo-Fernandes, E, Horvat, P, et al.. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 2011;91:295–304. https://doi.org/10.1007/s00253-011-3260-0. 10.3390/app8091416 Garcia-Gonzalez, L, De Wever, H. Acetic acid as an indirect sink of CO2 for the synthesis of polyhydroxyalkanoates (PHA): comparison with PHA production processes directly using CO2 as feedstock. Appl Sci 2018;8:1416. https://doi.org/10.3390/app8091416. 10.1016/j.jbiotec.2007.03.013 Valappil, SP, Misra, SK, Boccaccini, AR, Keshavarz, T, Bucke, C, Roy, I. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J Biotechnol 2007;132:251–8. https://doi.org/10.1016/j.jbiotec.2007.03.013. 10.1007/s12010-017-2482-8 Gahlawat, G, Srivastava, AK. Model-based nutrient feeding strategies for the increased production of polyhydroxybutyrate (PHB) by Alcaligenes latus. Appl Biochem Biotechnol 2017;183:530–42. https://doi.org/10.1007/s12010-017-2482-8. 10.1016/j.nbt.2013.10.010 Duque, AF, Oliveira, CS, Carmo, IT, Gouveia, AR, Pardelha, F, Ramos, AM, et al.. Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. N Biotech 2014;31:276–88. https://doi.org/10.1016/j.nbt.2013.10.010. 10.1016/j.nbt.2017.12.001 Marang, L, van Loosdrecht, MCM, Kleerebezem, R. Enrichment of PHA-producing bacteria under continuous substrate supply. N Biotech 2018;41:55–61. https://doi.org/10.1016/j.nbt.2017.12.001. 10.1016/B978-0-12-816897-4.00005-9 Verma, ML, Kumar, S, Jeslin, J, Dubey, NK. Microbial production of biopolymers with potential biotechnological applications. In: Biopolymer-based formulations. Netherlands: Elsevier; 2020:105–37 pp. 10.1002/mbo3.755 Aljuraifani, AA, Berekaa, MM, Ghazwani, AA. Bacterial biopolymer (polyhydroxyalkanoate) production from low‐cost sustainable sources. Microbiology 2019;8:e00755. https://doi.org/10.1002/mbo3.755. Ali, WS, Zaki, NH, Obiad, SYN. Production of bioplastic by bacteria isolated from local soil and organic wastes. Curr Res Microbiol Biotechnol 2017;5:1012–7. 10.3144/expresspolymlett.2011.60 Kunasundari, B, Sudesh, K. Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 2011;5:620–34. https://doi.org/10.3144/expresspolymlett.2011.60. 10.5772/18042 Pei, L, Schmidt, M, Wei, W. Conversion of biomass into Bioplastics and their potential environmental impacts. Biotechnol Biopolym 2011;3:58–74. 10.1016/j.bbrep.2017.10.001 Mohapatra, S, Maity, S, Dash, HR, Das, S, Pattnaik, S, Rath, CC, et al.. Bacillus and biopolymer: prospects and challenges. Biochem Biophys Rep 2017;12:206–13. https://doi.org/10.1016/j.bbrep.2017.10.001. 10.1111/1751-7915.12776 Nielsen, C, Rahman, A, Rehman, AU, Walsh, MK, Miller, CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 2017;10:1338–52. https://doi.org/10.1111/1751-7915.12776. 10.1007/s00792-017-0954-y Squillaci, G, Parrella, R, Carbone, V, Minasi, P, La Cara, F, Morana, A. Carotenoids from the extreme halophilic archaeon haloterrigena turkmenica: identification and antioxidant activity. Extremophiles 2017;21:933–45. https://doi.org/10.1007/s00792-017-0954-y. 10.1016/j.ejbas.2016.05.001 Osman, Y, Elrazak, AA, Khater, W. Microbial biopolymer production by Microbacterium WA81 in batch fermentation. Egypt J Basic Appl Sci 2016;3:250–62. https://doi.org/10.1016/j.ejbas.2016.05.001. 10.1081/E-EBPP-120050586 Kundu, PP, Nandy, A, Mukherjee, A, Pramanik, N. Polyhydroxyalkanoates: microbial synthesis and applications. In: Encyclopedia of biomedical polymers and polymeric biomaterials, 11 volume set. Boca Raton: CRC Press; 2015:6391–411 pp. 10.1007/s10924-012-0541-3 Vazquez, A, Foresti, ML, Cerrutti, P, Galvagno, M. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 2013;21:545–54. https://doi.org/10.1007/s10924-012-0541-3. 10.1002/app.33307 Rani, MU, Udayasankar, K, Appaiah, KAA. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci 2011;120:2835–41. https://doi.org/10.1002/app.33307. 10.1016/j.ijbiomac.2022.08.056 Navya, PV, Gayathri, V, Samanta, D, Sampath, S. Bacterial cellulose: a promising biopolymer with interesting properties and applications. Int J Biol Macromol 2022;220:435–61. https://doi.org/10.1016/j.ijbiomac.2022.08.056. 10.1016/j.memsci.2019.117312 Hou, Y, Duan, C, Zhu, G, Luo, H, Liang, S, Jin, Y, et al.. Functional bacterial cellulose membranes with 3D porous architectures: conventional drying, tunable wettability and water/oil separation. J Membr Sci 2019;591:117312. https://doi.org/10.1016/j.memsci.2019.117312. 10.1021/acsanm.9b00022 Derami, HG, Jiang, Q, Ghim, D, Cao, S, Chandar, YJ, Morrissey, JJ, et al.. A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl Nano Mater 2019;2:1092–101. https://doi.org/10.1021/acsanm.9b00022. 10.1021/acssuschemeng.6b03027 Štefelová, J, Slovák, V, Siqueira, G, Olsson, RT, Tingaut, P, Zimmermann, T, et al.. Drying and pyrolysis of cellulose nanofibers from wood, bacteria, and algae for char application in oil absorption and dye adsorption. ACS Sustainable Chem Eng 2017;5:2679–92. https://doi.org/10.1021/acssuschemeng.6b03027. 10.1007/s13762-019-02510-4 Tyagi, N, Thangadurai, P, Suresh, S. Application of bacterial cellulose–silver nanoprism composite for detoxification of endosulfan and inactivation of Escherichia coli cells. Int J Environ Sci Technol 2020;17:1713–26. https://doi.org/10.1007/s13762-019-02510-4. 10.3390/pr8050624 Gorgieva, S. Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes 2020;8:624. https://doi.org/10.3390/pr8050624. 10.1039/C7RA06699F Khalid, A, Ullah, H, Ul-Islam, M, Khan, R, Khan, S, Ahmad, F, et al.. Bacterial cellulose–TiO 2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 2017;7:47662–8. https://doi.org/10.1039/c7ra06699f. 10.1021/acsami.9b17732 Yuan, H, Chen, L, Hong, FF. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl Mater Interfaces 2020;12:3382–92. https://doi.org/10.1021/acsami.9b17732. 10.1016/j.msec.2017.11.006 Yeo, JCC, Muiruri, JK, Thitsartarn, W, Li, Z, He, C. Recent advances in the development of biodegradable PHB-based toughening materials: approaches, advantages and applications. Mater Sci Eng C Mater Biol Appl 2018;92:1092–116. https://doi.org/10.1016/j.msec.2017.11.006. 10.1007/978-981-16-0045-6_1 Magagula, SI, Mohapi, M, Sefadi, JS, Mochane, MJ. The production and applications of microbial-derived polyhydroxybutyrates. In: Microbial polymers. Singapore: Springer; 2021:3–43 pp. 10.1016/j.biortech.2020.123536 Sirohi, R, Pandey, JP, Gaur, VK, Gnansounou, E, Sindhu, R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresour Technol 2020;311:123536. https://doi.org/10.1016/j.biortech.2020.123536. 10.1016/j.biortech.2021.124734 Sirohi, R, Gaur, VK, Pandey, AK, Sim, SJ, Kumar, S. Harnessing fruit waste for poly-3-hydroxybutyrate production: a review. Bioresour Technol 2021;326:124734. https://doi.org/10.1016/j.biortech.2021.124734. 10.1016/B978-0-444-64052-9.00002-9 Roy, S, Pandit, S. Microbial electrochemical system. In: Microbial electrochemical technology. Netherlands: Elsevier; 2019:19–48 pp. 10.1126/science.1217412 Logan, BE, Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012;337:686–90. https://doi.org/10.1126/science.1217412. 10.1016/j.biortech.2012.08.060 Srikanth, S, Reddy, MV, Mohan, SV. Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES). Bioresour Technol 2012;125:291–9. https://doi.org/10.1016/j.biortech.2012.08.060. 10.1016/j.biotechadv.2013.05.001 Kalathil, S, Khan, MM, Lee, J, Cho, MH. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv 2013;31:915–24. https://doi.org/10.1016/j.biotechadv.2013.05.001. 10.1016/j.tibtech.2008.11.005 Pham, TH, Aelterman, P, Verstraete, W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 2009;27:168–78. https://doi.org/10.1016/j.tibtech.2008.11.005. 10.1016/j.biortech.2009.10.017 Pant, D, Van Bogaert, G, Diels, L, Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 2010;101:1533–43. https://doi.org/10.1016/j.biortech.2009.10.017. 10.1007/978-3-319-66793-5_9 Prakasam, V, Bagh, SGF, Ray, S, Fifield, B, Porter, LA, Lalman, JA. Role of biocathodes in bioelectrochemical systems. In: Microbial fuel cell. Cham: Springer; 2018:165–87 pp. 10.1016/j.bioelechem.2010.06.002 Behera, M, Jana, PS, More, TT, Ghangrekar, MM. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry 2010;79:228–33. https://doi.org/10.1016/j.bioelechem.2010.06.002. 10.3390/en11020343 Kumar, P, Chandrasekhar, K, Kumari, A, Sathiyamoorthi, E, Kim, BS. Electro-fermentation in aid of bioenergy and biopolymers. Energies 2018;11:343. https://doi.org/10.3390/en11020343. 10.1016/j.biortech.2011.09.040 Reddy, MV, Mohan, SV. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresour Technol 2012;103:313–21. https://doi.org/10.1016/j.biortech.2011.09.040. 10.1016/j.biteb.2019.100283 Banu, JR, Kumar, MD, Gunasekaran, M, Kumar, G. Biopolymer production in bio electrochemical system: literature survey. Bioresour Technol Rep 2019;7:100283. https://doi.org/10.1016/j.biteb.2019.100283. 10.1074/jbc.TM117.000368 Anderson, LA, Islam, MA, Prather, KLJ. Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. J Biol Chem 2018;293:5053–61. https://doi.org/10.1074/jbc.tm117.000368. 10.1016/j.ymben.2014.04.004 Liu, Y, Zhu, Y, Ma, W, Shin, HD, Li, J, Liu, L, et al.. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng 2014;24:61–9. https://doi.org/10.1016/j.ymben.2014.04.004. 10.1007/s00253-015-7215-8 Hossain, GS, Shin, HD, Li, J, Wang, M, Du, G, Chen, J, et al.. Metabolic engineering for amino-oligo-and polysugar production in microbes. Appl Microbiol Biotechnol 2016;100:2523–33. https://doi.org/10.1007/s00253-015-7215-8. 10.1016/j.ymben.2015.01.004 Lee, SW, Oh, MK. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab Eng 2015;28:143–50. https://doi.org/10.1016/j.ymben.2015.01.004. 10.1186/s12862-016-0815-9 Gonçalves, IR, Brouillet, S, Soulié, MC, Gribaldo, S, Sirven, C, Charron, N, et al.. Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 2016;16:252. https://doi.org/10.1186/s12862-016-0815-9. 10.1002/bit.26014 Lee, SW, Oh, MK. Improved production of N‐acetylglucosamine in Saccharomyces cerevisiae by reducing glycolytic flux. Biotechnol Bioeng 2016;113:2524–8. https://doi.org/10.1002/bit.26014. 10.1016/j.biortech.2012.12.150 Jia, Y, Zhu, J, Chen, X, Tang, D, Su, D, Yao, W, et al.. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol 2013;132:427–31. https://doi.org/10.1016/j.biortech.2012.12.150. 10.1016/j.meteno.2016.01.003 Kaur, M, Jayaraman, G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab Eng Commun 2016;3:15–23. https://doi.org/10.1016/j.meteno.2016.01.003. 10.1016/j.jbiotec.2014.05.018 Jeong, E, Shim, WY, Kim, JH. Metabolic engineering of pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol 2014;185:28–36. https://doi.org/10.1016/j.jbiotec.2014.05.018. 10.1186/s12934-016-0517-4 de Oliveira, JD, Carvalho, LS, Gomes, AMV, Queiroz, LR, Magalhães, BS, Parachin, NS. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Factories 2016;15:119. https://doi.org/10.1186/s12934-016-0517-4.
Item Type: | Article |
---|---|
Subjects: | Bioengineering > Biomedical Process |
Divisions: | Bioengineering |
Depositing User: | Mr IR Admin |
Date Deposited: | 16 Sep 2024 09:19 |
Last Modified: | 16 Sep 2024 09:19 |
URI: | https://ir.vistas.ac.in/id/eprint/6246 |