Change Detection in Water Body Areas Through Optimization Algorithm Using High- and Low-Resolution Satellite Images:

Sivasankari, A. and Jayalakshmi, S. and Booba, B. (2023) Change Detection in Water Body Areas Through Optimization Algorithm Using High- and Low-Resolution Satellite Images:. In: Change Detection in Water Body Areas Through Optimization Algorithm Using High- and Low-Resolution Satellite Images:. IGI GLOBAL, pp. 138-152.

[thumbnail of Change Detection in Water Body Areas Through Optimization Algorithm Using High- and Low-Resolution Satellite Images.pdf] Archive
Change Detection in Water Body Areas Through Optimization Algorithm Using High- and Low-Resolution Satellite Images.pdf

Download (137kB)

Abstract

A. Sivasankari Vels Institute of Science, Technology, and Advanced Studies, India S. Jayalakshmi MEASI Institute of Information Technology, India B. Booba Vels Institute of Science, Technology, and Advanced Studies, India Change Detection in Water Body Areas Through Optimization Algorithm Using High- and Low-Resolution Satellite Images The Earth's surface has changed significantly as a result of human activity on the land expanding agriculture and population. To fulfil the growing demand for fundamental human necessities and wellbeing, it is crucial to have correct information on land use and land cover (LULC) and the best methods of using it. Large geographic regions can be found in sufficient detail in satellite photos, both qualitatively and quantitatively. The most effective methods for detecting together static and dynamic biophysical modules on the Earth's surface, which are regularly introduced for mapping LULC, are satellite depending remote sensing (RS) methods. In order to classify RS images into change/nochange classes, image pre-processing is done in this study, and the information content of the satellite images is assessed. In this work, a change detection method for identifying land cover and water bodies is proposed utilizing a stacked ensemble classifier with mean weight residual neural network (MWResNet) and entropy.
chapter 10 2023 9 11 138 152 10.4018/978-1-6684-9189-8.ch010 20231127100632 https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-9189-8.ch010 https://www.igi-global.com/viewtitle.aspx?TitleId=330325 10.3390/s16071075 Exploring Landsat 8 T. D.Acharya 2004 4 4 Int. J. IT Eng. Appl. Sci. Res AcharyaT. D.YangI. (2004). Exploring Landsat 8. Int. J. IT Eng. Appl. Sci. Res, (4), 4–10. Model based change detection of water body using Landsat imagery: A case study of Rajshahi Bangladesh T.Ahammad 2020 10.32526/ennrj.18.4.2020.33 345 4 Environment and Natural Resources Journal AhammadT.RahamanH.FaisalB. R.SultanaN. (2020). Model based change detection of water body using Landsat imagery: A case study of Rajshahi Bangladesh. Environment and Natural Resources Journal, 18(4), 345–355. 18 MapReduce a comprehensive review. M. A.Al-Khasawneh 2018 1 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE) Al-KhasawnehM. A.ShamsuddinS. M.HasanS.BakarA. A. (2018). MapReduce a comprehensive review. In 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)(pp. 1-6). IEEE. Optimal policy learning for disease prevention using reinforcement learning. Z.Alam Khan 2020 10.1155/2020/7627290 1 Scientific Programming Alam KhanZ.FengZ.UddinM. I.MastN.Ali ShahS. A.ImtiazM.MahmoudM. (2020). Optimal policy learning for disease prevention using reinforcement learning.Scientific Programming, 2020, 1–13. 2020 IES: Hyper-chaotic plain image encryption scheme using improved shuffled confusion-diffusion. A. A.Alarood 2022 10.1016/j.asej.2021.09.010 3 Ain Shams Engineering Journal AlaroodA. A.AlsolamiE.Al-KhasawnehM. A.AbabnehN.ElmedanyW. (2022). IES: Hyper-chaotic plain image encryption scheme using improved shuffled confusion-diffusion.Ain Shams Engineering Journal, 13(3), 101583. 13 Chaudhary, J. K., Sharma, H., Tadiboina, S. N., Singh, R., Khan, M. S., & Garg, A. (2023). Applications of Machine Learning in Viral Disease Diagnosis. In 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1167-1172). IEEE. Multi-temporal independent component analysis and Landsat 8 for delineating maximum extent of the 2013 Colorado front range flood S.Chignell 2015 10.3390/rs70809822 9822 Remote Sensing ChignellS.AndersonR.EvangelistaP. (2015). Multi-temporal independent component analysis and Landsat 8 for delineating maximum extent of the 2013 Colorado front range flood. Remote Sensing, 7, 9822–9843. 7 Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors M. C.Cordeiro 2021 10.1016/j.rse.2020.112209 1 Remote Sensing of Environment CordeiroM. C.MartinezJ. M.Peña-LuqueS. (2021). Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, 253, 1–46. 253 Temporal Change Detection in Water Body of Puzhal Lake Using Satellite Images L.Divya 2018 1229 International Conference On Computational Vision and Bio Inspired Computing DivyaL.KarthiR.GeethaP. (2018). Temporal Change Detection in Water Body of Puzhal Lake Using Satellite Images. In International Conference On Computational Vision and Bio Inspired Computing(pp. 1229–1237). Cham: Springer. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China”. China Z.Du 2012 1 1 Journal of Applied Remote Sensing DuZ.BinL.LingF.LiW.TianW.WangH.ZhangX. (2012). Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China”. China. Journal of Applied Remote Sensing, 6(1), 1–17. 6 10.1080/2150704x.2014.960606 Change detection in remote sensing observations M.Gregoire 2010 95 Digital Signal and Image Processing Series GregoireM.StephaneD.EmmanuelT.LionelB. (2010). Change detection in remote sensing observations. In Digital Signal and Image Processing Series (pp. 95–142). John Wiley & Sons Inc. Change detection from remotely sensed images: From pixel-based to object-based approaches M.Hussain 2013 10.1016/j.isprsjprs.2013.03.006 91 ISPRS Journal of Photogrammetry and Remote Sensing HussainM.ChenD.ChengA.WeiH.StanleyD. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106. 80 10.1109/ICACITE57410.2023.10183350 Jain, A., Krishna, M. M., Tadiboina, S. N., Joshi, K., Chanti, Y., & Krishna, K. S. (2023). An analysis of medical images using deep learning. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 1440-1445). IEEE. 10.1080/10106049.2014.894586 Evaluation of various image classification techniques on Landsat to identify coral reefs. T.Kondraju 2014 10.1080/19475705.2013.802748 173 5 Geomatics, Natural Hazards & Risk KondrajuT.MandlaV. R. B.MahendraR. S. (2014). Evaluation of various image classification techniques on Landsat to identify coral reefs.Geomatics, Natural Hazards & Risk, (5), 173–184. Grouping and Sponsoring Centric Green Coverage Model for Internet of Things. V.Kumar 2021 10.3390/s21123948 3948 12 Sensors (Basel) KumarV.KumarS.AlShboulR.AggarwalG.KaiwartyaO.KhasawnehA. M.Al-KhasawnehM. A. (2021). Grouping and Sponsoring Centric Green Coverage Model for Internet of Things.Sensors (Basel), 21(12), 3948.34201100 21 A deep learning method of water body extraction from high resolution remote sensing images with multisensors M.Li 2021 10.1109/JSTARS.2021.3060769 3120 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing LiM.WuP.WangB.ParkH.YangH.WuY. (2021). A deep learning method of water body extraction from high resolution remote sensing images with multisensors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3120–3132. 14 10.1109/IC3I56241.2022.10073261 Mahendran, R., Tadiboina, S. N., Thrinath, B. S., Gadgil, A., Madem, S., & Srivastava, Y. (2022). Application of Machine Learning and Internet of Things for Identification of Nutrient Deficiencies in Oil Palm. In 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) (pp. 2024-2028). IEEE. 10.1109/ICACITE57410.2023.10183103 Manikandan, N., Tadiboina, S. N., Khan, M. S., Singh, R., & Gupta, K. K. (2023). Automation of Smart Home for the Wellbeing of Elders Using Empirical Big Data Analysis. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 1164-1168). IEEE. Channel contention-based routing protocol for wireless ad hoc networks. N.Mast 2021 10.1155/2021/2051796 1 Complexity MastN.KhanM. A.UddinM. I.Ali ShahS. A.KhanA.Al-KhasawnehM. A.MahmoudM. (2021). Channel contention-based routing protocol for wireless ad hoc networks.Complexity, 2021, 1–10. 2021 Application of classification techniques for identification of water region in multiple sources using Landsat-8 OLI imagery. V. K.Mishra 2019 10.23919/URSIAP-RASC.2019.8738343 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC) MishraV. K.PantT. (2019). Application of classification techniques for identification of water region in multiple sources using Landsat-8 OLI imagery. In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).IEEE. Water level monitoring using classification techniques on Landsat-8 data at Sangam region, Prayagraj, India V. K.Mishra 2020 10.1049/iet-ipr.2020.1078 3733 15 IET Image Processing MishraV. K.PantT. (2020). Water level monitoring using classification techniques on Landsat-8 data at Sangam region, Prayagraj, India. IET Image Processing, 14(15), 3733–3741. 14 Ng, T. F., Jiang, D. H., Jiag, X., Paull, D. J., & Wang, X. H. (2013). Change detection for sustainability monitoring using satellite remote sensing data. The University of New South Wales at Canberra. Towards green computing oriented security: A lightweight postquantum signature for IoE. R.Rani 2021 10.3390/s21051883 1883 5 Sensors (Basel) RaniR.KumarS.KaiwartyaO.KhasawnehA. M.LloretJ.Al-KhasawnehM. A.AlaroodA. A. (2021). Towards green computing oriented security: A lightweight postquantum signature for IoE.Sensors (Basel), 21(5), 1883.33800227 21 10.1016/j.ins.2014.01.037 Segmentation of Liver Tumor in CT Scan Using ResU-Net. M. W.Sabir 2022 8650 17 Applied Sciences (Basel, Switzerland) SabirM. W.KhanZ.SaadN. M.KhanD. M.Al-KhasawnehM. A.PerveenK.Azhar AliS. S. (2022). Segmentation of Liver Tumor in CT Scan Using ResU-Net.Applied Sciences (Basel, Switzerland), 12(17), 8650. 12 A survey of modern classification techniques in remote sensing for improved image classification M.Salah 2017 1 1 Journal of Genomics SalahM. (2017). A survey of modern classification techniques in remote sensing for improved image classification. Journal of Genomics, 11(1), 1–21. 11 10.1109/ICSCEE50312.2021.9498045 Saleh, M. A., Othman, S. H., Al-Dhaqm, A., & Al-Khasawneh, M. A. (2021). Common investigation process model for Internet of Things forensics. In 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE) (pp. 84-89). IEEE. Change detection in SAR images using deep belief network: A new training approach based on morphological images F.Samadi 2019 10.1049/iet-ipr.2018.6248 2255 12 IET Image Processing SamadiF.AkbarizadehG.KaabiH. (2019). Change detection in SAR images using deep belief network: A new training approach based on morphological images. IET Image Processing, 13(12), 2255–2264. 13 Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey G.Sarp 2017 10.1016/j.jtusci.2016.04.005 381 3 Journal of Taibah University for Science : JTUSCI SarpG.OzcelikM. (2017). Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science : JTUSCI, 11(3), 381–391. 11 10.1080/17538947.2018.1474959 10.1080/01431161.2018.1446566 The importance and leverage of modern information technology infrastructure in the healthcare industry. S. N.Tadiboina 2022 340 11 Int J Res Trends Innov TadiboinaS. N.ChaseG. C. (2022). The importance and leverage of modern information technology infrastructure in the healthcare industry.Int J Res Trends Innov, 7(11), 340–344. 7 A Hybrid Level Set Based Approach for Surface Water Delineation using Landsat-8 Multispectral Images”. Multispectral Images B.Tv 2021 1 2 Engineering Letters TvB.KnN. (2021). A Hybrid Level Set Based Approach for Surface Water Delineation using Landsat-8 Multispectral Images”. Multispectral Images. Engineering Letters, 29(2), 1–10. 29 Optimal policy learning for COVID-19 prevention using reinforcement learning. M. I.Uddin 2022 10.1177/0165551520959798 336 3 Journal of Information Science UddinM. I.Ali ShahS. A.Al-KhasawnehM. A.AlaroodA. A.AlsolamiE. (2022). Optimal policy learning for COVID-19 prevention using reinforcement learning.Journal of Information Science, 48(3), 336–348. 48 Certificateless proxy reencryption scheme (CPRES) based on hyperelliptic curve for access control in content-centric network (CCN). Z.Ullah 2020 10.1155/2020/4138516 1 Mobile Information Systems UllahZ.ZebA.UllahI.AwanK. M.SaeedY.UddinM. I.ZareeiM. (2020). Certificateless proxy reencryption scheme (CPRES) based on hyperelliptic curve for access control in content-centric network (CCN).Mobile Information Systems, 2020, 1–13. 2020 10.1080/01431161.2019.1685720 Extracting aquaculture ponds from natural water surfaces around inland lakes on medium resolution multispectral images Z.Zeng 2019 10.1016/j.jag.2019.03.019 13 International Journal of Applied Earth Observation and Geoinformation ZengZ.WangD.TanW.HuangJ. (2019). Extracting aquaculture ponds from natural water surfaces around inland lakes on medium resolution multispectral images. International Journal of Applied Earth Observation and Geoinformation, 80, 13–25. 80

Item Type: Book Section
Subjects: Computer Science > Software Engineering
Divisions: Computer Science
Depositing User: Mr IR Admin
Date Deposited: 14 Sep 2024 10:16
Last Modified: 14 Sep 2024 10:16
URI: https://ir.vistas.ac.in/id/eprint/6115

Actions (login required)

View Item
View Item