Shyamalagowri, Shanmugasundaram and Shanthi, Natarajan and Manjunathan, Jagadeesan and Kamaraj, Murugesan and Manikandan, Arumugam and Aravind, Jeyaseelan (2023) Techniques for the detection and quantification of emerging contaminants. Physical Sciences Reviews, 8 (9). pp. 2191-2218. ISSN 2365-659X
![[thumbnail of Techniques for the detection and quantification of emerging contaminants.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
Techniques for the detection and quantification of emerging contaminants.pdf
Download (448kB)
Abstract
Techniques for the detection and quantification of emerging contaminants Shanmugasundaram Shyamalagowri P.G. and Research Department of Botany , Pachaiyappas College , Chennai - 600030 , Tamil Nadu , India https://orcid.org/0000-0002-4273-1253 Natarajan Shanthi P.G. and Research Department of Botany , Pachaiyappas College , Chennai - 600030 , Tamil Nadu , India https://orcid.org/0000-0002-1261-2499 Jagadeesan Manjunathan Department of Biotechnology , Vels Institute of Science, Technology and Advanced Studies (VISTAS) , Chennai - 600117 , Tamil Nadu , India https://orcid.org/0000-0002-5745-0278 Murugesan Kamaraj College of Biological and Chemical Engineering, Addis Ababa Science and Technology University , Addis Ababa - 16417 , Ethiopia https://orcid.org/0000-0002-0111-8524 Arumugam Manikandan Department of Industrial Biotechnology , Bharath Institute of Higher Education and Research , Chennai , Tamil Nadu , India https://orcid.org/0000-0001-7134-2022 Jeyaseelan Aravind Department of Civil Engineering, Environmental Research , Dhirajlal Gandhi College of Technology , Salem - 636309 , Tamil Nadu , India https://orcid.org/0000-0001-9699-2312 Abstract
In recent years, the diverse industrial practices and human inputs widely disseminated emerging contaminants (ECs) throughout environmental matrices, which is of great concern. Even at low concentrations, ECs pose major ecological problems and threaten human health and the environment’s biota. Consequently, people’s interest and concerns on the widespread dissemination of environmentally connected ECs of great concern as developed due to their scientific understanding, technical innovation, and socioeconomic awareness. Increased detection of contaminants may occur from climatic, socioeconomic, and demographic changes and the growing sensitivity of analytical techniques. Hence, this article reviews the determination of ECs in ecological specimens, from aquatic setup (river water, marine water, and wastewater), sludge, soil, sediment, and air. Sample collection and the quality measures are summarized. The preparation of samples, including extraction and cleanup and the subsequent instrumental analysis of ECs, are all covered. Traditional and recent extraction and cleanup applications to analyze ECs in samples are reviewed here in this paper. The detection and quantification of ECs using gas chromatography (GC) and liquid chromatography (LC) linked with various detectors, particularly mass spectrometry (MS), is also summarized and explored, as are other possible techniques. This study aims to give readers a more excellent knowledge of how new and improved approaches are being developed and serve as a resource for researchers looking for the best method for detecting ECs in their studies.
09 22 2023 10 05 2021 09 01 2023 2191 2218 10.1515/psr-2021-0055 10.1515/psr-2021-0055 https://www.degruyter.com/document/doi/10.1515/psr-2021-0055/html https://www.degruyter.com/document/doi/10.1515/psr-2021-0055/pdf https://www.degruyter.com/document/doi/10.1515/psr-2021-0055/xml USGS (US Geological Survey). Contaminants of emerging concern in the environment. Environmental Health – Toxic Substances Hydrology Program; 2017. Alvarez, DA, Jones-Lepp, TL. Chapter 11. Sampling and analysis of emerging pollutants. Water quality concepts, sampling, and analyses. Boca Raton, FL: CRC Press - Taylor & Francis Group, LLC; 2010:199–226 pp. 10.1016/j.envint.2014.12.006 Annamalai, J, Namasivayam, V. Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int 2015;76:78–97. https://doi.org/10.1016/j.envint.2014.12.006. 10.1080/10643389.2018.1540761 Barroso, PJ, Santos, JL, Martín, J, Aparicio, I, Alonso, E. Emerging contaminants in the atmosphere: analysis, occurrence and future challenges. Crit Rev Environ Sci Technol 2019;49:104–71. https://doi.org/10.1080/10643389.2018.1540761. 10.1016/j.coesh.2020.10.002 Farré, M. Remote and in-situ devices for the assessment of marine contaminants of emerging concern and plastic debris detection. Curr Opin Environ Sci Health 2020;18:79–94. https://doi.org/10.1016/j.coesh.2020.10.002. 10.1016/j.aca.2017.06.029 Pérez-Fernández, V, Rocca, LM, Tomai, P, Fanali, S, Gentili, A. Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017;983:9–41. https://doi.org/10.1016/j.aca.2017.06.029. 10.1016/j.chroma.2012.07.024 Farré, M, Kantiani, L, Petrovic, M, Pérez, S, Barceló, D. Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J Chromatogr A 2012;1259:86–99. https://doi.org/10.1016/j.chroma.2012.07.024. 10.1016/j.chroma.2016.10.060 Zacs, D, Bartkevics, V. Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography – Orbitrap mass spectrometry. J Chromatogr A 2016;1473:109–21. https://doi.org/10.1016/j.chroma.2016.10.060. 10.1016/j.talanta.2017.08.052 Ciofi, L, Renai, L, Rossini, D, Ancillotti, C, Falai, A, Fibbi, D, et al.. Applicability of the direct injection liquid chromatographic tandem mass spectrometric analytical approach to the sub-ng L−1 determination of perfluoro-alkyl acids in waste, surface, ground and drinking water samples. Talanta 2018;176:412–21. https://doi.org/10.1016/j.talanta.2017.08.052. Lane, SL, Flanagan, S, Wilde, FD. Selection of equipment for water sampling (ver. 2.0): US geological survey techniques of water-resources investigations; 2003. Book 9, Chap. A2. Available from: http://pubs.water.usgs.gov/twri9A2/ [Accessed 2 May 2008]. 10.1007/0-387-35414-X_4 Huckins, JN, Booij, K, Petty, JD. Study considerations. Monitors of organic chemicals in the environment. Springer US; 2006:87–99 pp. IAEA. Soil sampling for environmental contaminants; 2004:63 p. 10.1080/10408347.2018.1496010 García-Córcoles, MT, Rodríguez-Gómez, R, de Alarcón-Gómez, B, Çipa, M, Martín-Pozo, L, Kauffmann, JM, et al.. Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: a review. Crit Rev Anal Chem 2019;49:160–86. https://doi.org/10.1080/10408347.2018.1496010. 10.1007/s11270-016-2768-4 Mohapatra, DP, Cledon, M, Brar, SK, Surampalli, RY. Application of wastewater and biosolids in soil: occurrence and fate of emerging contaminants. Water, Air, Soil Pollut 2016;227:77. https://doi.org/10.1007/s11270-016-2768-4. 10.1016/j.talanta.2018.09.056 Martín-Pozo, L, de Alarcón-Gómez, B, Rodríguez-Gómez, R, García-Córcoles, MT, Çipa, M, Zafra-Gómez, A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019;192:508–33. https://doi.org/10.1016/j.talanta.2018.09.056. 10.1016/j.jhazmat.2019.02.084 Matich, EK, Soria, NG, Aga, DS, Atilla-Gokcumen, GE. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. J Hazard Mater 2019;373:527–35. https://doi.org/10.1016/j.jhazmat.2019.02.084. 10.1016/j.trac.2020.115861 Xiong, Y, Leng, Y, Li, X, Huang, X, Xiong, Y. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. Trac Trends Anal Chem 2020;126:115861. https://doi.org/10.1016/j.trac.2020.115861. 10.1016/j.trac.2010.03.014 Nieto, A, Borrull, F, Pocurull, E, Marcé, RM. Pressurized liquid extraction: a useful technique to extract pharmaceuticals and personal-care products from sewage sludge. Trac Trends Anal Chem 2010;29:752–64. https://doi.org/10.1016/j.trac.2010.03.014. 10.1016/j.talanta.2012.08.045 Dorival-García, N, Zafra-Gómez, A, Navalón, A, Vílchez, JL. Improved sample treatment for the determination of bisphenol A and its chlorinated derivatives in sewage sludge samples by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. Talanta 2012;101:1–10. https://doi.org/10.1016/j.talanta.2012.08.045. 10.1016/S1001-0742(12)60201-0 Wang, X, Xi, B, Huo, S, Sun, W, Pan, H, Zhang, J, et al.. Characterization, treatment and releases of PBDEs and PAHs in a typical municipal sewage treatment plant situated beside an urban river, East China. J Environ Sci 2013;25:1281–90. https://doi.org/10.1016/s1001-0742(12)60201-0. 10.1016/j.talanta.2020.121697 Assis, RC, Mageste, AB, de Lemos, LR, Orlando, RM, Rodrigues, GD. Application of aqueous two-phase system for selective extraction and cleanup of emerging contaminants from aqueous matrices. Talanta 2020:121697. https://doi.org/10.1016/j.talanta.2020.121697. 10.1016/j.trac.2016.03.003 Xu, J, Chen, G, Huang, S, Qiu, J, Jiang, R, Zhu, F, et al.. Application of in vivo solid-phase microextraction in environmental analysis. Trac Trends Anal Chem 2016;85:26–35. https://doi.org/10.1016/j.trac.2016.03.003. 10.1016/j.eti.2021.101741 Sivaranjanee, R, Kumar, PS. A review on remedial measures for effective separation of emerging contaminants from wastewater. Environ Technol Innov 2021:101741. https://doi.org/10.1016/j.eti.2021.101741. 10.1007/s00604-020-04527-w Sereshti, H, Duman, O, Tunç, S, Nouri, N, Khorram, P. Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Microchim Acta 2020;187:1–35. https://doi.org/10.1007/s00604-020-04527-w. 10.1556/1326.2020.00790 Dugheri, S, Marrubini, G, Mucci, N, Cappelli, G, Bonari, A, Pompilio, I, et al.. A review of micro-solid-phase extraction techniques and devices applied in sample pretreatment coupled with chromatographic analysis. Acta Chromatogr 2021;33:99–111. https://doi.org/10.1556/1326.2020.00790. 10.1007/s11419-021-00582-x Birk, L, Santos, SO, Eller, S, Merib, JO, Oliveira, TF. Determinations of new psychoactive substances in biological matrices with focus on microextraction techniques: a review of fundamentals and state-of-the-art extraction methods. Forensic Toxicol 2021:1–8. https://doi.org/10.1007/s11419-021-00582-x. 10.1021/acs.est.6b05931 Tou, F, Yang, Y, Feng, J, Niu, Z, Pan, H, Qin, Y, et al.. Environmental risk implications of metals in sludges from waste water treatment plants: the discovery of vast stores of metal-containing nanoparticles. Environ Sci Technol 2017;51:4831–40. https://doi.org/10.1021/acs.est.6b05931. 10.1016/j.aca.2012.05.016 Zuloaga, O, Navarro, P, Bizkarguenaga, E, Iparraguirre, A, Vallejo, A, Olivares, M, et al.. Overview of extraction, cleanup and detection techniques for the determination of organic pollutants in sewage sludge: a review. Anal Chim Acta 2012;736:7–29. https://doi.org/10.1016/j.aca.2012.05.016. 10.1016/j.chroma.2009.11.066 Tadeo, JL, Sánchez-Brunete, C, Albero, B, García-Valcárcel, AI. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J Chromatogr A 2010;1217:2415–40. https://doi.org/10.1016/j.chroma.2009.11.066. 10.1016/j.chroma.2008.02.091 Regueiro, J, Llompart, M, Garcia-Jares, C, Garcia-Monteagudo, JC, Cela, R. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 2008;1190:27–38. https://doi.org/10.1016/j.chroma.2008.02.091. 10.1016/j.trac.2019.07.007 Albero, B, Tadeo, JL, Pérez, RA. Ultrasound-assisted extraction of organic contaminants. Trac Trends Anal Chem 2019;118:739–50. https://doi.org/10.1016/j.trac.2019.07.007. 10.1016/j.chroma.2008.11.034 Fontana, AR, Wuilloud, RG, Martínez, LD, Altamirano, JC. Simple approach based on ultrasound-assisted emulsification-microextraction for determination of polibrominated flame retardants in water samples by gas chromatography-mass spectrometry. J Chromatogr A 2009;1216:147–53. https://doi.org/10.1016/j.chroma.2008.11.034. 10.1016/j.microc.2020.104775 Hryniewicka, M, Starczewska, B, Tkaczuk, N. Simple approach based on ultrasound-assisted emulsification microextraction for determination of β-sitosterol in dietary supplements and selected food products. Microchem J 2020;155:104775. https://doi.org/10.1016/j.microc.2020.104775. 10.1016/B978-0-12-816911-7.00013-X Alvarez-Rivera, G, Bueno, M, Ballesteros-Vivas, D, Mendiola, JA, Ibañez, E. Pressurized liquid extraction. In: Liquid-phase extraction. Elsevier; 2020:375–98 pp. https://doi.org/10.1016/b978-0-12-816911-7.00013-x. 10.1016/j.talanta.2011.10.042 Llop, A, Borrull, F, Pocurull, E. Pressurised hot water extraction followed by headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry for the determination of N-nitrosamines in sewage sludge. Talanta 2012;88:284–9. https://doi.org/10.1016/j.talanta.2011.10.042. 10.3390/foods8100503 Moret, S, Conchione, C, Srbinovska, A, Lucci, P. Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods 2019;8:503. https://doi.org/10.3390/foods8100503. 10.1016/j.trac.2019.04.029 Llompart, M, Celeiro, M, Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. Trac Trends Anal Chem 2019;116:136–50. https://doi.org/10.1016/j.trac.2019.04.029. 10.1007/s00216-021-03363-y Álvarez-Ruiz, R, Picó, Y, Sadutto, D, Campo, J. Development of multi-residue extraction procedures using QuEChERS and liquid chromatography tandem mass spectrometry for the determination of different types of organic pollutants in mussel. Anal Bioanal Chem 2021:1–4. https://doi.org/10.1007/s00216-021-03363-y. 10.1016/j.chroma.2021.462396 Martínez-Piernas, AB, Plaza-Bolaños, P, Gilabert, A, Agüera, A. Application of a fast and sensitive method for the determination of contaminants of emerging concern in wastewater using a quick, easy, cheap, effective, rugged and safe-based extraction and liquid chromatography coupled to mass spectrometry. J Chromatogr A 2021:462396. https://doi.org/10.1016/j.chroma.2021.462396. 10.1016/j.chroma.2014.11.042 Liu, R, Ruan, T, Song, S, Lin, Y, Jiang, G. Determination of synthetic phenolic antioxidants and relative metabolites in sewage treatment plant and recipient river by high performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 2015;1381:13–21. https://doi.org/10.1016/j.chroma.2014.11.042. 10.1016/j.chroma.2013.01.113 Albero, B, Sánchez-Brunete, C, Miguel, E, Pérez, RA, Tadeo, JL. Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography-tandem mass spectrometry. J Chromatogr A 2013;1283:39–45. https://doi.org/10.1016/j.chroma.2013.01.113. 10.1016/j.foodchem.2016.09.017 Albero, B, Sánchez-Brunete, C, Miguel, E, Tadeo, JL. Application of matrix solid-phase dispersion followed by GC-MS/MS to the analysis of emerging contaminants in vegetables. Food Chem 2017;217:660–7. https://doi.org/10.1016/j.foodchem.2016.09.017. 10.5772/intechopen.93375 Ismail, WN, Mokhtar, SU. Various methods for removal, treatment, and detection of emerging water contaminants. Emerg Contam 2020. https://doi.org/10.5772/intechopen.93375. 10.1016/j.chroma.2012.05.084 Gros, M, Rodríguez-Mozaz, S, Barceló, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 2012;1248:104–21. https://doi.org/10.1016/j.chroma.2012.05.084. 10.1007/s11356-013-1586-0 Agüera, A, Martínez Bueno, MJ, Fernández-Alba, AR. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environ Sci Pollut Control Ser 2013;20:3496–515. https://doi.org/10.1007/s11356-013-1586-0. 10.1007/s00216-012-6444-2 Chen, Z-F, Ying, G-G, Lai, H-J, Chen, F, Su, H-C, Liu, Y-S, et al.. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2012;10:3175–88. https://doi.org/10.1007/s00216-012-6444-2. 10.1016/j.chroma.2012.04.076 Zhou, L-J, Ying, G-G, Liu, S, Zhao, J-L, Chen, F, Zhang, R-Q, et al.. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 2012;1244:123–38. https://doi.org/10.1016/j.chroma.2012.04.076. 10.1016/j.chroma.2013.07.036 Köck-Schulmeyer, M, Olmos, M, López de Alda, M, Barceló, D. Development of a multiresidue method for analysis of pesticides in sediments based on isotope dilution and liquid chromatography-electrospray-tandem mass spectrometry. J Chromatogr A 2013;1305:176–87. https://doi.org/10.1016/j.chroma.2013.07.036. 10.1016/j.chroma.2013.12.074 Yang, Y, Lu, L, Zhang, J, Yang, Y, Wu, Y, Shao, B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 2014;1328:26–34. https://doi.org/10.1016/j.chroma.2013.12.074. 10.1016/j.talanta.2014.09.017 Huerta, B, Jakimska, A, Llorca, M, Ruhí, A, Margoutidis, G, Acuña, V, et al.. Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. Talanta 2015;132:373–81. https://doi.org/10.1016/j.talanta.2014.09.017. 10.1016/j.scitotenv.2017.06.201 Ferrey, ML, Hamilton, MC, Backe, WJ, Anderson, KE. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation. Sci Total Environ 2018;612:1488–97. https://doi.org/10.1016/j.scitotenv.2017.06.201. 10.1016/j.chemosphere.2018.04.028 Ashfaq, M, Li, Y, Wang, Y, Qin, D, Rehman, MSU, Rashid, A, et al.. Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China. Chemosphere 2018;204:170–7. https://doi.org/10.1016/j.chemosphere.2018.04.028. 10.1016/j.jhazmat.2019.121712 Gago-Ferrero, P, Bletsou, AA, Damalas, DE, Aalizadeh, R, Alygizakis, NA, Singer, HP, et al.. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J Hazard Mater 2020;387:121712. https://doi.org/10.1016/j.jhazmat.2019.121712. 10.1016/j.chroma.2021.462369 Ofrydopoulou, A, Nannou, C, Evgenidou, E, Lambropoulou, D. Sample preparation optimization by central composite design for multi class determination of 172 emerging contaminants in wastewaters and tap water using liquid chromatography high-resolution mass spectrometry. J Chromatogr A 2021:462369. https://doi.org/10.1016/j.chroma.2021.462369. 10.1016/j.mex.2021.101290 Valverde, MG, Bueno, MJ, del Mar Gómez-Ramos, M, Díaz-Galiano, FJ, Fernández-Alba, AR. Validation of a quick and easy extraction method for the determination of emerging contaminants and pesticide residues in agricultural soils. MethodsX 2021;8:101290. https://doi.org/10.1016/j.mex.2021.101290. 10.1007/s00253-012-3929-z Fischer, K, Fries, E, Körner, W, Schmalz, C, Zwiener, C. New developments in the trace analysis of organic water pollutants. Appl Microbiol Biotechnol 2012;94:11–28. https://doi.org/10.1007/s00253-012-3929-z. 10.1007/s00216-010-3608-9 Krauss, M, Singer, H, Hollender, J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 2010;397:943–51. https://doi.org/10.1007/s00216-010-3608-9. 10.1007/s00216-015-8581-x Del Carmen Salvatierra-Stamp, V, Ceballos-Magaña, SG, Gonzalez, J, Ibarra-Galván, V, Muñiz-Valencia, R. Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection. Anal Bioanal Chem 2015;407:4219–26. https://doi.org/10.1007/s00216-015-8581-x. 10.1016/j.chroma.2014.05.003 Robles-Molina, J, Lara-Ortega, FJ, Gilbert-López, B, García-Reyes, JF, Molina-Díaz, A. Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 2014;1350:30–43. https://doi.org/10.1016/j.chroma.2014.05.003. 10.1016/j.jes.2016.06.014 Ahmed, M, Chin, YH, Guo, X, Zhao, X-M. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem. J Environ Sci 2017;55:1–10. https://doi.org/10.1016/j.jes.2016.06.014. 10.1080/05704928.2019.1694937 Flores, K, Turley, RS, Valdes, C, Ye, Y, Cantu, J, Hernandez-Viezcas, JA, et al.. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl Spectrosc Rev 2021;56:1–26. https://doi.org/10.1080/05704928.2019.1694937. 10.1016/j.aca.2014.04.020 Novak, P, Zuliani, T, Milačič, R, Ščančar, J. Development of an analytical procedure for the determination of polybrominated diphenyl ethers in environmental water samples by GC-ICP-MS. Anal Chim Acta 2014;827:64–73. https://doi.org/10.1016/j.aca.2014.04.020. 10.1016/j.talanta.2018.10.076 Quintelas, C, Mesquita, DP, Ferreira, EC, Amaral, AL. Quantification of pharmaceutical compounds in wastewater samples by near infrared spectroscopy (NIR). Talanta 2019;194:507–13. https://doi.org/10.1016/j.talanta.2018.10.076. 10.1007/978-3-540-36253-1_2 Rodriguez-Mozaz, S, López de Alda, MJ, Barceló, D. Achievements of the RIANA and AWACSS EU projects: immunosensors for the determination of pesticides, endocrine disrupting chemicals and pharmaceuticals. In: Handbook of environmental chemistry. Springer Berlin Heidelberg; 2009, vol 5:33–46 pp. https://doi.org/10.1007/978-3-540-36253-1_2. 10.1016/j.trac.2008.09.018 Farré, M, Kantiani, L, Pérez, S, Barceló, D, Barceló, D. Sensors and biosensors in support of EU directives. Trac Trends Anal Chem 2009;28:170–85. https://doi.org/10.1016/j.trac.2008.09.018. 10.1021/acs.analchem.9b03855 Kaewwonglom, N, Oliver, M, Cocovi-Solberg, DJ, Zirngibl, K, Knopp, D, Jakmunee, J, et al.. Reliable sensing platform for plasmonic enzyme-linked immunosorbent assays based on automatic flow-based methodology. Anal Chem 2019;91:13260–7. https://doi.org/10.1021/acs.analchem.9b03855. 10.1016/j.talanta.2018.03.036 Sanchis, A, Salvador, J-P, Campbell, K, Elliott, CT, Shelver, WL, Li, QX, et al.. Fluorescent microarray for multiplexed quantification of environmental contaminants in seawater samples. Talanta 2018;184:499–506. https://doi.org/10.1016/j.talanta.2018.03.036. 10.1016/j.jhazmat.2020.124413 Rathi, BS, Kumar, PS, Show, P-L. A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. J Hazard Mater 2021;409:124413. https://doi.org/10.1016/j.jhazmat.2020.124413. 10.1016/j.jenvman.2013.03.041 Silva, CP, Lima, DLD, Schneider, RJ, Otero, M, Esteves, VI. Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. J Environ Manag 2013;124:121–7. https://doi.org/10.1016/j.jenvman.2013.03.041. 10.1039/D0AY00426J Silva, CP, Carvalho, T, Schneider, RJ, Esteves, VI, Lima, DLD. ELISA as an effective tool to determine spatial and seasonal occurrence of emerging contaminants in the aquatic environment. Anal Methods 2020;12:2517–26. https://doi.org/10.1039/d0ay00426j. 10.1016/j.chroma.2015.09.080 Prebihalo, S, Brockman, A, Cochran, J, Dorman, FL. Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 2015;1419:109–15. https://doi.org/10.1016/j.chroma.2015.09.080. 10.1016/j.talanta.2019.03.120 Arismendi, D, Becerra-Herrera, M, Cerrato, I, Richter, P. Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction-derivatization-gas chromatography/mass spectrometry. Talanta 2019;201:480–9. https://doi.org/10.1016/j.talanta.2019.03.120. 10.1016/j.scitotenv.2015.04.012 Zhang, H, Bayen, S, Kelly, BC. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore’s coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry. Sci Total Environ 2015;523:219–32. https://doi.org/10.1016/j.scitotenv.2015.04.012. 10.1016/j.chemosphere.2016.09.077 Comtois-Marotte, S, Chappuis, T, Vo Duy, S, Gilbert, N, Lajeunesse, A, Taktek, S, et al.. Analysis of emerging contaminants in water and solid samples using high resolution mass spectrometry with a Q Exactive orbital ion trap and estrogenic activity with YES-assay. Chemosphere 2017;166:400–11. https://doi.org/10.1016/j.chemosphere.2016.09.077. 10.1016/j.chroma.2015.10.077 Llorca, M, Lucas, D, Ferrando-Climent, L, Badia-Fabregat, M, Cruz-Morató, C, Barceló, D, et al.. Suspect screening of emerging pollutants and their major transformation products in wastewaters treated with fungi by liquid chromatography coupled to a high resolution mass spectrometry. J Chromatogr A 2016;1439:124–36. https://doi.org/10.1016/j.chroma.2015.10.077. 10.1016/j.scitotenv.2019.02.448 Guyader, ME, Warren, LD, Green, E, Butt, C, Ivosev, G, Kiesling, RL, et al.. Prioritizing potential endocrine active high resolution mass spectrometry (HRMS) features in Minnesota lakewater. Sci Total Environ 2019;670:814–25. https://doi.org/10.1016/j.scitotenv.2019.02.448. 10.1016/j.watres.2016.07.075 Cotton, J, Leroux, F, Broudin, S, Poirel, M, Corman, B, Junot, C, et al.. Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry. Water Res 2016;104:20–7. https://doi.org/10.1016/j.watres.2016.07.075. 10.1016/j.chroma.2017.08.003 Althakafy, JT, Kulsing, C, Grace, MR, Marriott, PJ. Liquid chromatography—quadrupole Orbitrap mass spectrometry method for selected pharmaceuticals in water samples. J Chromatogr A 2017;1515:164–71. https://doi.org/10.1016/j.chroma.2017.08.003. 10.1016/j.chroma.2015.12.036 Petrie, B, Youdan, J, Barden, R, Kasprzyk-Hordern, B. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2016;1431:64–78. https://doi.org/10.1016/j.chroma.2015.12.036. 10.1016/j.chroma.2016.05.027 Tong, L, Liu, H, Xie, C, Li, M. Quantitative analysis of antibiotics in aquifer sediments by liquid chromatography coupled to high resolution mass spectrometry. J Chromatogr A 2016;1452:58–66. https://doi.org/10.1016/j.chroma.2016.05.027. 10.1016/j.microc.2018.04.012 Salvatierra-stamp, V, Muñiz-Valencia, R, Jurado, JM, Ceballos-Magaña, SG. Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples. Microchem J 2018;140:87–95. https://doi.org/10.1016/j.microc.2018.04.012. 10.1016/j.chroma.2017.05.053 Campos-Mañas, MC, Plaza-Bolaños, P, Sánchez-Pérez, JA, Malato, S, Agüera, A. Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to highly sensitive ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2017;1507:84–94. https://doi.org/10.1016/j.chroma.2017.05.053. 10.1016/j.envpol.2010.10.009 Terzic, S, Ahel, M. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Environ Pollut 2011;159:557–66. https://doi.org/10.1016/j.envpol.2010.10.009. 10.1016/j.talanta.2015.06.047 Caldas, SS, Rombaldi, C, de Oliveira Arias, JL, Marube, LC, Primel, EG. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 2016;146:676–88. https://doi.org/10.1016/j.talanta.2015.06.047. 10.1016/j.talanta.2019.01.013 Jia, X, Zhao, J, Ren, H, Wang, J, Hong, Z, Zhang, X. Zwitterion-functionalized polymer microspheres-based solid phase extraction method on-line combined with HPLC-ICP-MS for mercury speciation. Talanta 2019;196:592–9. https://doi.org/10.1016/j.talanta.2019.01.013. 10.1016/j.envpol.2016.02.012 Gutiérrez, C, Fernández, C, Escuer, M, Campos-Herrera, R, Rodríguez, MEB, Carbonell, G, et al.. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environ Pollut 2016;213:184–94. https://doi.org/10.1016/j.envpol.2016.02.012. 10.1016/j.marchem.2019.103685 Lu, Y, Gao, X, Chen, C-TA. Separation and determination of colloidal trace metals in seawater by cross-flow ultrafiltration, liquid-liquid extraction and ICP-MS. Mar Chem 2019;215:103685. https://doi.org/10.1016/j.marchem.2019.103685.
Item Type: | Article |
---|---|
Subjects: | Biotechnology > Bioinformatics |
Divisions: | Biotechnology |
Depositing User: | Mr IR Admin |
Date Deposited: | 14 Sep 2024 08:37 |
Last Modified: | 14 Sep 2024 08:37 |
URI: | https://ir.vistas.ac.in/id/eprint/6059 |