Andal, Perumal and Tamijselvi, S. and Pradeep, S. and Gayathri, K. (2021) Synthesis of Graphene oxide supported with Bimetallic nanoparticles and its Application. Research Journal of Pharmacy and Technology. pp. 2665-2670. ISSN 0974-3618
![[thumbnail of 813.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
813.pdf
Download (357kB)
Abstract
Synthesis of Graphene oxide supported with Bimetallic nanoparticles and its Application Perumal Andal Vels Institute of Science Technology and Advanced Studies, Department of Chemistry, School of Basic Sciences, Pallavarm, Kancheepuram, District Chennai - 600117, Tamil Nadu, India. S. Tamijselvi Vels Institute of Science Technology and Advanced Studies, Department of Chemistry, School of Basic Sciences, Pallavarm, Kancheepuram, District Chennai - 600117, Tamil Nadu, India. S. Pradeep Vels Institute of Science Technology and Advanced Studies, Department of Chemistry, School of Basic Sciences, Pallavarm, Kancheepuram, District Chennai - 600117, Tamil Nadu, India. K. Gayathri Vels Institute of Science Technology and Advanced Studies, Department of Chemistry, School of Basic Sciences, Pallavarm, Kancheepuram, District Chennai - 600117, Tamil Nadu, India. In this study, a very simple and highly effective mechanochemical preparation method was developed for the preparation of Ni nanoparticles supported graphene oxide (GO). The developed method is not only very simple and efficient, but also, the morphology of Ni/GO nanocomposites can be tuned by simply varying the metal loading. The nanoparticle has an immense assortment of prospective applications in biomedical, optical, and electronic fields. Nanoparticles are of great technological fascination as they are effectively an aqueduct between bulk substances and atomic or molecular structures. The properties of matter change as their size approaches to nanoscale and as the atomic percentage at the material surface becomes significant. For bulk materials larger than one micrometre in size, the rate of particles at the surface is minute relative to the total number of particles of the material. The absorbing and occasionally unpredicted properties of nanoparticles are not partly due to the characteristic of the material surface dominating the properties instead of the bulk properties. In this study, two different graphene oxide supported by two mono Ni Mn and bimetallic Ni\Mn nanoparticles catalyst synthesized. The size and shape of the products were characterised by scanning electron microscopy (SEM) andX-ray diffraction spectroscopy (XRD). Results proved that the newly developed graphene oxide carried nickel-manganese nanoparticles catalysts can be more efficient to reductive, oxidative and environmentally important organic pollutants.
5 26 2021 5 26 2021 2665 2670 10.52711/0974-360X.2021.00470 https://rjptonline.org/AbstractView.aspx?PID=2021-14-5-54 10.1063/1.4754271 Robert, T.; Sylvain, C.; Todd, O.; Patrick, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H.; Small particles, big impacts, A review of the diverse applications of nanofluids. J Appl Phy.2013; 113, 011301-11319. 10.1038/lsa.2012.34 Taylor, R.A.; Otanicar, T.; Rosengarten, G.; Nanofluid-based optical filter optimization for PV/T systems. Light Sci and Appl, 2012; 10: 1-7. 10.1364/ao.52.006041 Hewakuruppu, Y.L.; Dombrovsky, L.A.; Chen, C.; Timchenko. V.; Jiang, X.; Baek, S.; Taylor, R.A.; Plasmonic. pump–probe. method to study semi- transparent nanofluids. Appl. Optics, 2013; 52, 6041-6050 10.1021/cm1009493 Zhong, L.; Lisa A. F.; Pratyush T.; Sara, A. D.; Michael, T. L.; Mark, A. R.; Tobin J. M.; In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness, Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites. Chem. Mate.2010; 22: 5154-5164 10.1002/chem.200400927 Benjamin. W.; Yugang, S.; Brian, M.; and Younan, X;. Shape-Controlled Synthesis of Metal Nanostructures, The Case of Silver. Chem. Eur. J.2005 11, 454 – 463. 10.1021/jp0475640 Evanoff G.; Chumanov.; Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections. ‘J. Phys. Chem. B .2004,108, 13957- 13962 10.1021/jp074257w Getahun, M.; Robert, W.; Geoffrey, L.; Bratoljub, H. M.; Dan Meisel.; Redox Catalysis on. Naked. Silver Nanoparticles. J. Phy. Chem. C.2007, 111, 12220-12226. 10.1016/j.jcis.2005.05.068 Oliveira, M.; Ugarte, D.; Zanchet, D.; Zarbin, A.; Influence of synthetic parameters on the size, structure and stability of dodecaethiol-stabilized silver Nanoparticles. J. Col. Inter. Sci.2005; 292,429-435 10.5897/AJMR10.159 Afghan, S.; Raza, G. and Lashari.; Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram- negative bacteria. African J. Micro. Res.2011, 5,1368-1373 Johnson, K. E.; Xiao, L.; and Driver, G.; Ionic Liquids. in ACS Symposium 818, 2012, 10.1021/bk-2002-0818 Rogers R. D.; and Seddon, K. R. Editors, Washington D.C.; Ionic Liquids. in ACS Symposium 230,2002. 10.1149/1.1568740 Xiao, L.; and Johnson, K. E.; Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid. J. Electrochem. Soc.2003,150, 307-312, 10.1039/c39920000965 Wilkes, J.S.; Zaworotko, M. J.; Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem Soc. Chem. Commun.1992, 13, 965-967 10.1016/j.molliq.2013.10.022 Gupta, V.K.; Yola, M.L.; Eren, T.; Kartal, F.; Caglayan, M.O.; Atar, N.; Catalytic activity of Fe @ Ag nanoparticles involved calcium alginate beads for the reduction of nitrophenols. J. mol. Liquids.2014, 190,133-138 10.1002/marc.200300093 Sun, X.; Dong, S.; and Wang, E.; One step synthesis and size control of dendrimer protected gold nanoparticles a heat treatment – based strategy. Nature 2004,45,2181-2184 10.1016/j.msec.2014.03.037 Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogens, Mater. Sci. Eng.2014, 40, 24-31. 10.1039/c1jm11718a Taner, M.; Sayar, N.; Yulug, I.G.; and Suzer, S.; Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys. J .Mater. Chem.2011, 21, 13150- 13154 10.1016/j.cej.2013.10.062 Liu, W.J.; Qian, T. T.; and Jiang, H.; Bimetallic Fe nanoparticles, Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical. Eng .2014,236, 448-463 10.1038/nature04969 Stankovich, S.; Dikin, D. A.; Dommett, G.H.B.; Kohlhaas, K.M.; Graphene-based composite Materials. Nature 2006,422, 282-286. 10.1002/adma.201001068 Murali, S.; Cai, W.; Li, X.; Suk J. W.; Potts, J. R.; Ruoff, R. S.; Graphene and Graphene Oxide, Synthesis, Properties, and Applications. Adv. mater.2010, 20,1-19. 10.1016/j.cej.2013.10.062 Liu, W.J.; Qian, T.T.; and Jiang, H.;. Bimetallic Fenanoparticles, Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J.2014, 236, 448-463. 10.1016/s0021-9797(02)00135-2 Wu, S.H.; and Chen, D. H.; Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol.; J. Coll. Inter. Sci.2003,259,282-286. 10.1016/j.mseb.2004.03.024 Wang, W.; Itoh.; Y.; Lenggoro,I.; and Okuyama, K.; Nickel and Nickel Oxide Nanoparticles Prepared from Nickel Nitrate Hexahydrate by a Low Pressure Spray Pyrolysis, Mate. Sci. Eng. B.2004, 111, 69–76. 10.1016/j.matlet.2012.02.049 Eluri, R.; and Paul, B.; Microwave assisted greener synthesis of nickel nanoparticles using sodium hypophosphite.; Mater Letters 2012,76,36–39. 10.1007/s10853-005-3659-z Tseng, W.; and Chen, C.; Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 2006; 41: 1213–1219. 10.14233/ajchem.2018.20914 Perumal Andal.; and Roopakala.; Graphene Oxide Supported Ruthenium and Ruthenium-Silver Nanoparticles as Catalyst with Antibacterial Activity. Asian. J. Chem, 2017;29, 1-8. 10.5958/0974-360x.2017.00656.4 Perumal Andal.; Chandran Loganayagi.; Roopakala.; Synthesis and characterisation of graphene oxide supported mono and bimetallic nano particles as catalyst with antibacterial activity. Research. J. Pharm. and Tech 2017:10:3610-3620. 10.5958/0974-360x.2018.00509.7 Perumal Andal.; Tamilselvi. S.; and Indra Priyatharesini. P.; Green synthesis of silver nanoparticles from carrot; Research J Pharm and Tech.2018, 11,2757-2760. 10.14233/ajchem.2018.21345 Perumal Andal, S. Tamilselvi and P. Indra priyatharesini. Kinetic Study for Reduction of Organic Dye Using Graphene Oxide Supported Ru-Ag Nanoparticles Catalyst. Asian. J. Chem. 2018,30, 2175-2179. 10.3390/catal9050486 Mayakrishnan G.; Somasundaram S.; Dian D.; Facile Mechanochemical Synthesis of Nickel/Graphene Oxide Nanocomposites with Unique and Tunable Morphology: Applications in Heterogeneous Catalysis and Supercapacitors, Catalysts 2019, 9, 486-505. 10.1021/nl101700j Joo S.H.; Park J.Y.; Renzas J.R.; Butche, D.R.; Huang W.; Somorjai G.A. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Lett. 2010, 10, 2709–2713.
Item Type: | Article |
---|---|
Subjects: | Chemistry > Physical Chemistry |
Divisions: | Chemistry |
Depositing User: | Mr IR Admin |
Date Deposited: | 13 Sep 2024 10:32 |
Last Modified: | 13 Sep 2024 10:32 |
URI: | https://ir.vistas.ac.in/id/eprint/5918 |