Mudhr: Malicious URL detection using heuristic rules based approach

Raja, A. Saleem and Pradeepa, G. and Arulkumar, N. (2022) Mudhr: Malicious URL detection using heuristic rules based approach. In: RECENT TRENDS IN SCIENCE AND ENGINEERING, 27–28 February 2021, Krishnagiri, India.

Full text not available from this repository. (Request a copy)

Abstract

Technology advancement helps the people in numerous ways such as it supports business development, banking, education, entertainment etc. Especially time critical and money related activities, people are fully really on internet and web applications. It saves valuable time and money. Despite of the benefits, it also gives wide space for the attackers to focus more victims. Malicious URL based attacks are most common and more dangerous attacks now a day which steals the credentials and sensitive data from the victims and perform malicious activities in the victim’s space. Phishing, Spamming, drive by download are the example of such attacks and are preformed through malicious URL. Plenty of approaches are available to detect the malicious URL. That are grouped under three categories such as Blacklist based, Heuristic based and Machine Learning based approaches. Among the three, heuristic approach is better than the blacklist approach in term of better generalizing the malicious URL and gives equally accurate prediction with machine learning approach. This paper presents recent works in the field of malicious URL detection and novel technique to detect malicious URL based on the most important features derived from URL.

Item Type: Conference or Workshop Item (Paper)
Subjects: Computer Science > Software Engineering
Divisions: Computer Science
Depositing User: Mr IR Admin
Date Deposited: 13 Sep 2024 08:32
Last Modified: 13 Sep 2024 08:32
URI: https://ir.vistas.ac.in/id/eprint/5836

Actions (login required)

View Item
View Item