Electron beam processing of rubbers and their composites

Shanmugharaj, A. M. and Vijayabaskar, V. and Bhowmick, Anil K. (2022) Electron beam processing of rubbers and their composites. International Polymer Processing, 37 (5). pp. 471-504. ISSN 0930-777X

Full text not available from this repository. (Request a copy)

Abstract

Electron beam processing of rubbers and their composites A. M. Shanmugharaj Department of Chemistry , Centre for Energy and Alternative Fuels, Vels Institute of Science, Technology and Advanced Studies , Chennai 600117 , India V. Vijayabaskar Balmer Lawrie & Co. Ltd., Manali , Chennai 600068 , India Anil K. Bhowmick Department of Chemical and Biomolecular Engineering , The University of Houston , Houston , TX 77204-4004 , USA Abstract

Electron beam (EB) processing of pristine and filled polymeric materials is considered as one of the most viable techniques in the development of three-dimensional (3D) network structures of polymeric or composite systems with improved physical and chemical properties. The grafting, or the crosslinking process induced by the merging of the macro free radicals generated during the electron beam modification without the aid of any chemical agent or heat, is responsible for the formation of the 3D networks in polymeric systems. Owing to its distinct advantages such as fast, clean and precise, electron beam (EB) radiation technology takes up a vital role in the crosslinking of polymeric compounds. However, during the course of electron beam treatment of polymers, two processes viz ., crosslinking and chain scission take place simultaneously, depending on the level of radiation dose used for the processing. The present paper reviews the role of irradiation dose in the presence and absence of radiation sensitizer on the crosslinking and structure formation in a wide variety of soft matrices such as elastomers, latexes, thermoplastic elastomers and their respective filled systems. Notable improvements in mechanical and dynamic mechanical properties, thermal stability, processing characteristics, etc., of the EB processed elastomers and their composites are discussed elaborately in the paper. Specially, the property improvements observed in the EB processed pristine and filled rubbers in comparison to the conventional crosslinking technology are critically reviewed. The level of radiation dose inducing crosslinking in both pristine and filled rubbers, determined by calculating crosslink to scission ratio on the basis of Charlesby–Pinner equation is also discussed in the paper. Finally, the application aspects of electron beam curing technology with special emphasis to cable and sealing industries as developed by one of the authors are highlighted in the paper.
11 25 2022 09 13 2022 11 01 2022 471 504 10.1515/ipp-2021-4211 10.1515/ipp-2021-4211 https://www.degruyter.com/document/doi/10.1515/ipp-2021-4211/html https://www.degruyter.com/document/doi/10.1515/ipp-2021-4211/pdf https://www.degruyter.com/document/doi/10.1515/ipp-2021-4211/xml 10.1016/j.mtcomm.2019.100840 Ahmed, J., Wu, J., Mushtaq, S., and Zhang, Y. (2020). Effects of electron beam irradiation and multi-functional monomer/co-agents on the mechanical and thermal properties of ethylene-vinyl acetate copolymer/polyamide blends. Mater. Today Commun. 23: 100840, https://doi.org/10.1016/j.mtcomm.2019.100840. 10.1002/app.1986.070320330 Akhtar, S., De, P.P., and De, S.K. (1986). Tensile failure of γ-ray irradiated blends of high-density polyethylene and natural rubber. J. Appl. Polym. Sci. 32: 4169–4183, https://doi.org/10.1002/app.1986.070320330. 10.1002/app.1985.070300634 Assink, R.A. (1985). Radiation crosslinking of polyurethanes. J. Appl. Polym. Sci. 30: 2701–2705, https://doi.org/10.1002/app.1985.070300634. 10.6028/jres.117.001 Baker-Jarvis, J. and Kim, S. (2012). The interaction of radio-frequency fields with dielectric materials at macroscopic and mesoscopic scales. J. Res. Natl. Inst. Stand. Technol. 117: 1–60, https://doi.org/10.6028/jres.117.001. 10.1007/s10853-006-0081-0 Banhart, F. (2006). Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J. Mater. Sci. 41: 4505–4511, https://doi.org/10.1007/s10853-006-0081-0. 10.1021/nl015541g Banhart, F. (2001). The formation of the connection between carbon nanotubes in an electron beam. Nano Lett. 1: 329–332, https://doi.org/10.1021/nl015541g. 10.1002/smll.200500162 Banhart, F., Li, J.X., and Terrones, M. (2005). Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1: 953–956, https://doi.org/10.1002/smll.200500162. 10.1016/S0032-3861(98)00244-4 Banik, I., Dutta, S.K., Chaki, T.K., and Bhowmick, A.K. (1999a). Electron beam induced structural modification of a fluorocarbon elastomer in the presence of polyfunctional monomers. Polymer 40: 447–458, https://doi.org/10.1016/S0032-3861(98)00244-4. 10.1016/S0969-806X(98)00218-7 Banik, I. and Bhowmick, A.K. (1999b). Influence of electron beam irradiation on the mechanical properties and crosslinking of fluorocarbon elastomer. Radiat. Phys. Chem. 54: 135–142, https://doi.org/10.1016/S0969-806X(98)00218-7. 10.1002/(SICI)1097-4628(20000628)76:14<2016::AID-APP4>3.0.CO;2-0 Banik, I. and Bhowmick, A.K. (2000). Electron beam modification of filled fluorocarbon rubber. J. Appl. Polym. Sci. 76: 2016–2025. 10.1163/016942409X12489445844471 Basak, G.C., Bandyopadhyay, A., Bharadwaj, Y.K., Sabharwal, S., and Bhowmick, A.K. (2008). Adhesion of vulcanized rubber surfaces: characterization of unmodified and electron beam modified EPDM surfaces and their co-vulcanization with natural rubber. J. Adhesion Sci. Technol. 23: 1763–1786, https://doi.org/10.1163/016942409X12489445844471. 10.1080/00218460903479305 Basak, G.C., Bandyopadhyay, A., Bharadwaj, Y.K., Sabharwal, S., and Bhowmick, A.K. (2010). Characterization of EPDM vulcanizates modified with gamma irradiation and trichloroisocyanuric acid and their adhesion behaviour with natural rubber. J. Adhesion 86: 306–334, https://doi.org/10.1080/00218460903479305. 10.1016/j.apsusc.2010.10.087 Basak, G.C., Bandyopadhyay, A., Neogi, S., and Bhowmick, A.K. (2011). Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber. Appl. Surf. Sci. 257: 2891–2904, https://doi.org/10.1016/j.apsusc.2010.10.087. 10.1007/3-540-07942-4_6 Basedow, A.M. and Ebert, K.H. (2006). Ultrasonic degradation of polymers in solution. Adv. Polym. Sci. 22: 83–148, https://doi.org/10.1007/3-540-07942-4_6. 10.1016/0146-5724(79)90075-X Becker, R.C., Bly, J.H., Cleland, M.R., and Farrell, J.P. (1977). Accelerator requirements for electron beam processing. Radiat. Phys. Chem. 14: 353, https://doi.org/10.1016/0146-5724(79)90075-X. 10.1016/j.nimb.2018.03.013 Bee, S.–T., Sin, L., Hoe, T., Ratnam, C., Bee, S., and Rahmat, A. (2018). Study of montmorillonite nanoparticles and electron beam irradiation interaction of ethylene vinyl acetate (EVA)/de-vulcanized waste rubber thermoplastic composites. Nucl. Instrum. Methods Phys. Res. B 423: 97–110, https://doi.org/10.1016/j.nimb.2018.03.013. 10.1002/app.1993.070490114 Behnisch, J., Hollander, A., and Zimmermann, H. (1993). Surface modification of polyethylene by remote dc discharge plasma treatment. J. Appl. Polym. Sci. 49: 117–124, https://doi.org/10.1002/app.1993.070490114. Bhowmick, A.K. and Mangaraj, D. (1994). Vulcanization and curing techniques. In: Bhowmick, A.K., Hall, M.M., and Benarey, H.A. (Eds.), Rubber products manufacturing technology. Marcel Dekker, New York, p. 363. Bhowmick, A.K. and Stephens, H.L. (2001). Handbook of elastomers, 2nd ed. CRC Press, Boca Raton, FL, USA. 10.5254/1.3547944 Bhowmick, A.K. and Vijayabaskar, V. (2006). Electron beam curing of elastomers. Rubber Chem. Technol. 79: 402–428, https://doi.org/10.5254/1.3547944. 10.4028/www.scientific.net/KEM.504-506.1099 Billon, N., Haudin, J.M., Vallot, C., and Babin, C. (2012). Stretch blow molding of mineral filled PET. Key Eng. Mater. 504–506: 1099–1104, https://doi.org/10.4028/www.scientific.net/KEM.504-506.1099. 10.5254/1.3535898 Bohm, G.G.A. and Tveekrem, J.O. (1982). The radiation chemistry of elastomers and its applications. Rubber Chem. Technol. 55: 578–668, https://doi.org/10.5254/1.3535898. 10.1002/pen.21296 Bordival, M., Le Maoult, Y., and Schmidt, F. (2009). Optimization of preform temperature distribution for the stretch-blow molding of PET: infrared heating and blow modelling. Polym. Eng. Sci. 49: 783–793, https://doi.org/10.1002/pen.21296. 10.1016/0032-3861(81)90068-9 Brewis, D. and Briggs, M.D. (1981). Adhesion to polyethylene and polypropylene. Polymer 22: 7–16, https://doi.org/10.1016/0032-3861(81)90068-9. 10.1007/BF00549306 Briggs, D., Brewis, D.M., and Konieczko, M.B. (1979). X-ray photoelectron spectroscopy studies of polymer surfaces. J. Mater. Sci. 14: 1344–1348, https://doi.org/10.1007/BF00549306. 10.1016/S0969-806X(98)00139-X Cardoso, E.C.L., Lugao, A.B., Andrade, E., and Silva, L.G. (1998). Crosslinked polyethylene foams, via EB radiation. Radiat. Phys. Chem. 52: 197–200, https://doi.org/10.1016/S0969-806X(98)00139-X. 10.1098/rspa.1952.0206 Charlesby, A. (1952). Cross-linking of polythene by pile radiation. Proc. R. Soc. A Mater. Phys. Eng. Sci. 215: 187–214, https://doi.org/10.1098/rspa.1952.0206. Charlesby, A. (1991). The effects of ionising radiation on polymers. In: Clegg, D.W. and Collyer, A.A. (Eds.), Irradiation effects on polymers. Elsevier, New York, USA. 10.1016/0146-5724(80)90200-9 Charlesby, A. and Lawler, J.P. (1980). Grafting of acrylic acid on to polyethylene using radiation as initiator. Radiat. Phys. Chem. 15: 595–602, https://doi.org/10.1016/0146-5724(80)90200-9. 10.5254/1.3547655 Chattopadhyay, S., Chaki, T.K., and Bhowmick, A.K. (2001a). New thermoplastic elastomers from poly(ethyleneoctene) (engage), poly (ethylene-vinyl acetate) and low-density polyethylene by electron beam technology: structural characterization and mechanical properties. Rubber Chem. Technol. 74: 815–833. 10.1002/1097-4628(20010307)79:10<1877::AID-APP170>3.0.CO;2-B Chattopadhyay, S., Chaki, T.K., and Bhowmick, A.K. (2001b). Development of new thermoplastic elastomers from blends of polyethylene and ethylene–vinyl acetate copolymer by electron-beam technology. J. Appl. Polym. Sci. 79: 1877–1889, https://doi.org/10.1002/1097-4628(20010307)79:10<1877::AID-APP170>3.0.CO;2-B. 10.1016/S0168-583X(03)01114-5 Chirinos, H., Yoshii, F., Makuuchi, K., and Lugao, A. (2003). Radiation vulcanization of natural rubber latex using 250 keV electron beam machine. Nuclear Inst. Method. Phys. Res. 208: 256–259, https://doi.org/10.1016/S0168-583X(03)01114-5. 10.1016/S0168-583X(01)00966-1 Clough, R.L. (2001). High-energy radiation and polymers: a review of commercial processes and emerging applications. Nuclear Inst. Methods Phys. Res Sec. B Beam Interact. Matter. Atoms 185: 8–33, https://doi.org/10.1016/S0168-583X(01)00966-1. 10.1021/bk-1996-0620 Clough, R.L. and Shalaby, S.W. (1996). Irradiation of polymers: Fundamentals and technological applications. American Chemical Society, Washington, DC, USA. 10.1021/ma60060a028 Crivello, J.V. and Lam, J.H.W. (1977). Diaryliodonium salts: a new class of photoinitiators for cationic polymerization. Macromolecules 10: 1307–1315, https://doi.org/10.1021/ma60060a028. 10.1016/S0969-806X(03)00081-1 Czvikovszky, T. (2003). Expected and unexpected achievements and trends in radiation processing of polymers. Radiat. Phys. Chem. 67: 434–440, https://doi.org/10.1016/S0969-806X(03)00081-1. 10.1016/0020-708X(70)90052-9 Daview, I.M. and McQue, B. (1970). Measurement of depth-dose distribution in electron irradiated materials. Int. J. Appl. Radiat. Isot. 21: 283, https://doi.org/10.1016/0020-708X(70)90052-9. 10.5254/1.3542926 Delollis, N.J. (1973). The use of radio-frequency activated gas treatment to improve bondability. Rubber Chem. Technol. 46: 549–554, https://doi.org/10.5254/1.3542926. Drobny, J.G. (2005). Paper # 29 presented in 167th spring Technical meeting of rubber division. ACS, San Antanio, Texas, USA. 10.1016/0021-9797(83)90077-2 Esumi, K., Schwartzz, A.M., and Zettlemoyer, A.C. (1983). Effects of ultraviolet radiation on polymer surfaces. J. Colloid Polym. Sci. 95: 102–107, https://doi.org/10.1016/0021-9797(83)90077-2. 10.1016/j.radphyschem.2021.109505 Fifield, L.S., Pharr, M., Staack, D., Pillai, S.D., Nichols, L., McCoy, J., Faucette, T., Bisel, T.T., Huang, M., Hasan, M.K., et al.. (2021a). Direct comparison of gamma, electron beam and X-ray irradiation doses on characteristics of low-density polyethylene, polypropylene homopolymer, polyolefin elastomer and chlorobutyl rubber medical device polymers. Radiat. Phys. Chem. 186: 109505, https://doi.org/10.1016/j.radphyschem.2021.109505. 10.1016/j.radphyschem.2020.109282 Fifield, L.S., Pharr, M., Staack, D., Pillai, S.D., Nichols, L., McCoy, J., Faucette, T., Bisel, T.T., Huang, M., Hasan, M.K., et al.. (2021b). Direct comparison of gamma, electron beam and X-ray irradiation effects on single-use blood collection devices with plastic components. Radiat. Phys. Chem. 180: 109282, https://doi.org/10.1016/j.radphyschem.2020.109282. 10.1016/j.nimb.2005.09.013 Frounchi, M., Dadbin, S., and Panahinia, F. (2006). Comparison between electron-beam and chemical crosslinking of silicone rubber. Nuclear Inst. Method. Phys. Res. 243: 354–358, https://doi.org/10.1016/j.nimb.2005.09.013. 10.1002/pen.24365 Galindo, B., Benedito, A., Ramos, F., and Gimenez, E. (2016). Microwave heating of polymers: influence of carbon nanotube dispersion on the microwave susceptor effectiveness. Polym. Eng. Sci. 56: 1321–1329, https://doi.org/10.1002/pen.24365. 10.1002/(SICI)1521-4044(19990901)50:9<317::AID-APOL317>3.0.CO;2-Q Gancarz, I., Pozniak, G., Bryjak, M., and Frankiewicz, A. (1999). Modification of polysulfone membrane. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym. 50: 317–326, https://doi.org/10.1002/(SICI)1521-4044(19990901)50:93.0.CO;2-Q. 10.1016/j.polymdegradstab.2020.109423 Geisler, M., Pal, T.S., and Lederer, A. (2021). Impact of electron beam irradiation on thermoplastic polyurethanes unraveled by thermal field-flow fractionation. Polym. Degradat. Stab. 183: 109423, https://doi.org/10.1016/j.polymdegradstab.2020.109423. 10.1007/s11671-008-9188-3 George, J.J. and Bhowmick, A.K. (2008). Fabrication and properties of ethylene vinyl acetate-carbon nanofiber nanocomposites. Nanoscale Res. Lett. 3: 508–515, https://doi.org/10.1007/s11671-008-9188-3. George, W.T. (1962). US Patent 3,018,189. Glaister, F.J. (1987). US Patent 4,637,955. 10.1016/0969-806X(96)00002-3 Haque, M.E., Dafader, N.C., Akhtar, F., and Ahmad, M.U. (1996). Radiation dose required for the vulcanization of natural rubber latex. Radiat. Phys. Chem. 48: 505–510, https://doi.org/10.1016/0969-806X(96)00002-3. 10.1016/0032-3861(84)90105-8 Harvey, Y., Rajbenboch, L.A., and Jagur-Grodzinski, J. (1984). Grafting of acrylamide to nylon-6 by the electron beam preirradiation technique: 3. Degree of crystallinity at high grafting yields. Polymer 25: 1431–1435, https://doi.org/10.1016/0032-3861(84)90105-8. Hofmann, W. (1989). Rubber technology handbook. Hanser, Munich, Germany. 10.1039/JM9960601309 Holmberg, S., Lehtinen, T., Näsman, J., Ostrovskii, D., Paronen, M., Serimaa, R., Sundholm, F., Sundholm, G., Torell, L., and Torkkeli, M. (1996). Structure and properties of sulfonated [(poly vinylidene fluoride)-g-styrene] porous membranes. J. Mat. Chem. 6: 1309–1317, https://doi.org/10.1039/JM9960601309. 10.3329/diujst.v5i1.4386 Hossain, K.M.Z. and Chowdhury, A.M.S. (2010). Grafting of n-butyl acrylate with natural rubber latex film by gamma radiation: a reaction mechanism. Daffodil Int. Univ. J. Sci. Technol. 5: 81–88. Ivanov, V.S. (1992). Radiation chemistry of polymers. VSP Publishers, Utrecht, The Netherlands. 10.1177/088532828600100305 Jonsen, B. (1987). Chemical modification of polyurethanes by radiation-induced grafting. J. Biomater. Appl. 1: 502–532, https://doi.org/10.1177/088532828600100305. 10.1016/1359-0197(92)90156-A Katbab, A.A., Burford, R.P., and Garnett, J.L. (1992). Radiation graft modification of EPDM rubber. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 39: 293–302, https://doi.org/10.1016/1359-0197(92)90156-A. Kawashima, C., Ogasawara, S., Tanaka, I., and Koga, Y. (1986). Ger Patent 3,524,370. 10.1021/j100875a044 Kondo, M. and Dole, M. (1966). Radiation chemistry of isotactic and atactic polypropylene. III. Radiolysis in the presence of nitrous oxide. J. Phys. Chem. 70: 883–889, https://doi.org/10.1021/j100875a044. Kreidl, W.H. (1953). US Patent 2,632,921. 10.1016/0146-5724(79)90091-8 Levine, H., McLaughlin, W.L., and Miller, A. (1979). Temperature and humidity effects on the gamma-ray response and stability of plastic and dyed plastic dosimeters. Radiat. Phys. Chem. 14: 551, https://doi.org/10.1016/0146-5724(79)90091-8. 10.1002/adv.20124 Lionetto, F. and Maffezzoli, A. (2009). Polymer characterization by ultrasonic wave propagation. Adv. Polym. Technol. 27: 63–73, https://doi.org/10.1002/adv.20124. 10.1016/1359-0197(89)90309-3 Lunkwitz, K., Brink, H.J., Handte, D., and Ferse, A. (1989). The radiation degradation of polytetrafluoroethylene resulting in low molecular and functionalized perfluorinated compounds. Int. J. Radiat. Appl. Instrum. Part C 33: 523–532, https://doi.org/10.1016/1359-0197(89)90309-3. 10.1002/(SICI)1097-4628(20000711)77:2<323::AID-APP8>3.0.CO;2-V Majumder, P.S. and Bhowmick, A.K. (2000). Structure–property relationship of electron-beam-modified EPDM rubber. J. Appl. Polym. Sci. 77: 323–337, https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<323::AID-APP8>3.0.CO;2-V. 10.1016/S0969-806X(97)00296-X Majumder, P.S. and Bhowmick, A.K. (1998a). Surface- and bulk-properties of EPDM rubber modified by electron beam irradiation. Radiat. Phys. Chem. 53: 63–78, https://doi.org/10.1016/S0969-806X(97)00296-X. 10.1163/156856197X00165 Majumder, P.S. and Bhowmick, A.K. (1997). Influence of the concentration of trimethylol propane triacrylate on the electron beam-induced surface modification of EPDM rubber. J. Adhesion Sci. Technol. 11: 1321–1342, https://doi.org/10.1163/156856197X00165. 10.1163/156856198X00335 Majumder, P.S. and Bhowmick, Anil K. (1998b). Electron beam-initiated surface modification of elastomers. J. Adhesion Sci. Technol. 12: 831–856, https://doi.org/10.1163/156856198X00335. 10.1016/S0043-1648(98)00255-5 Majumder, P.S. and Bhowmick, A.K. (1998c). Friction behaviour of electron beam modified ethylene–propylene diene monomer rubber surface. Wear 221: 15–23, https://doi.org/10.1016/S0043-1648(98)00255-5. Makkuchi, K. (1999). Role of radiation processing in materials science applications. KACST, Riyadh, Saudi Arabia. 10.1016/0969-806X(95)00304-G Makuuchi, K., Yoshi, F., and Gunewardena, J.A.G.S.G. (1995). Radiation vulcanization of natural rubber latex with low energy electron beams. Radiat. Phys. Chem. 46: 979–982, https://doi.org/10.1016/0969-806X(95)00304-G. McGinnise, V.D. (1986). Crosslinking with radiation. In Encyclopedia of polymer science and engineering, Kroschwitz, J.I., editor-in-chief. Wiley, New York, p. 418. 10.1016/j.radphyschem.2007.10.006 Mitra, S., Chattopadhyay, S., Bharadwaj, Y.K., Sabharwal, S., and Bhowmick, A.K. (2008). Effect of electron beam-cross-linked gels on the rheological properties of raw natural rubber. Radiat. Phys. Chem. 77: 630–642, https://doi.org/10.1016/j.radphyschem.2007.10.006. 10.1016/j.radphyschem.2009.09.009 Mitra, S., Chattopadhyay, S., Sabharwal, S., and Bhowmick, A.K. (2010). Electron beam crosslinked gels-preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers. Radiat. Phys. Chem. 79: 289–296, https://doi.org/10.1016/j.radphyschem.2009.09.009. 10.5254/1.3538211 Mohammed, S.A.H. and Walker, J. (1986). Application of electron beam radiation technology in tire manufacturing. Rubber Chem. Technol. 59: 482–496, https://doi.org/10.5254/1.3538211. Neuberg, N.W., Poszmik, G., and Sui, M. (1999). US Patent 5,891,573. 10.3390/cryst10080633 Permana, A.A., Chirasatitsin, S., and Putson, C. (2020). Electron-beam irradiation for boosting storage energy density of tuned poly (vinylidene fluoride-hexaflouropropylene)/graphene nanoplatelet polymer composites. Crystals 10: 633, https://doi.org/10.3390/cryst10080633. 10.1002/app.1994.070531003 Poncil-Epaillard, F., Chevet, B., and Brosse, J.C. (1994). Modification of isotactic polypropylene by a cold plasma or an electron beam and grafting of the acrylic acid onto these activated polymers. J. Appl. Polym. Sci. 53: 1291–1306, https://doi.org/10.1002/app.1994.070531003. 10.1143/JJAP.28.518 Rabe, J.G., Bischoff, G., and Schmidt, W.F. (1989). Electrical conductivity of polypyrrol-films as affected by adsorption of vapors. J. Appl. Phys. 28: 518–523, https://doi.org/10.1143/JJAP.28.518. Ramamurthi, S.S., Bapna, S.C., Soni, H.C., and Kotaiah, K. (1982). Proceedings of the Indo-USSR seminar on industrial applications of electron accelerator, November 1–3, Vol. 2. Bhabha Atomic Research Centre, Mumbai, India, p. 53. 10.1002/app.10240 Ray, S. and Bhowmick, A.K. (2002). Novel electron beam-modified surface-coated silica fillers: physical and chemical characteristics. J. Appl. Polym. Sci. 83: 2255–2268, https://doi.org/10.1002/app.10240. 10.1016/S0969-806X(01)00470-4 Ray, S., Bhowmick, A.K., Sharma, K.S.S., Majali, A.B., and Tikku, V.K. (2002). Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers. Radiat. Phys. Chem. 65: 627–640, https://doi.org/10.1016/S0969-806X(01)00470-4. 10.1063/1.1661684 Rosenstein, M. and Silverman, J. (1972). Electron depth-dose distribution measurements in finite polystyrene slabs. J. Appl. Phys. 43: 3191, https://doi.org/10.1063/1.1661684. 10.1002/pol.1956.120199114 Rossman, K. (1956). Improvement of bonding properties of polyethylene. J. Polym. Sci. 19: 141–144, https://doi.org/10.1002/pol.1956.120199114. 10.1016/1359-0197(90)90184-J Sabarinah, Y., Sundardi, S.F., and Kuncoro, A.H. (1990). Radiation vulcanization of natural rubber latex using a combination of monofunctional acrylic monomer and CCl4. Int. J. Radiat. Appl. Instrument. Part C Radiat. Phys. Chem. 36: 815, https://doi.org/10.1016/1359-0197(90)90184-J. 10.1002/polb.20036 Sadhu, S. and Bhowmick, A.K. (2004). Preparation and properties of nanocomposites based on acrylonitrile–butadiene rubber, styrene–butadiene rubber, and polybutadiene rubber. J. Polym. Sci. Part B Polym. Phys. 42: 1573–1585, https://doi.org/10.1002/polb.20036. Samantha, S., Sooriyarachi Makuuchi, K., Yoahii, F., and Ishigaki, I. (1989). “Radiation vulcanization of NR latex with 3 MeV electron beams” (Part 2). In: Proceedings of international symposium on radiation vulcanization of natural rubber latex, JAERI-M, Vol. 368, pp. 89–228. 10.1002/app.1967.070110809 Schonhorn, H. and Hansen, R.H. (1967). Surface treatment of polymers for adhesive bonding. J. Appl. Polym. Sci. 11: 1461–1474, https://doi.org/10.1016/j.apsusc.2004.04.033. 10.5254/1.3544987 Shanmugharaj, A.M. and Bhowmick, A.K. (2002). Modification of dual phase filler by electron beam irradiation: physical characterization. Rubber Chem. Technol. 75: 605–616, https://doi.org/10.5254/1.3544987. 10.1023/A:1015837620811 Shanmugharaj, A.M., Sabharwal, S., Majali, A.B., Tikku, V.K., and Bhowmick, A.K. (2002). Surface characterization of electron beam modified dual phase filler by ESCA, FT-IR and surface energy. J. Mater. Sci. 37: 2781–2793, https://doi.org/10.1023/A:1015837620811. 10.5254/1.3547744 Shanmugharaj, A.M. and Bhowmick, A.K. (2003). Influence of novel electron beam modified surface treated dual phase filler on rheometric and mechanical properties of styrene butadiene rubber vulcanizates. Rubber Chem. Technol. 76: 299–317, https://doi.org/10.5254/1.3547744. 10.1016/j.jiec.2016.10.020 Shin, I.H., Hong, S., Lim, S.J., Son, Y.–K., and Kim, T.–H. (2017). Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J. Indust. Eng. Chem. 46: 103–110, https://doi.org/10.1016/j.jiec.2016.10.020. 10.1134/S001814390906006X Smirnov, Y.N., Allayarov, S.R., Lesnichaya, V.A., Ol’khov, Y.A., Belov, G.P., and Dixon, D.A. (2009). The effect of gamma-radiation on polymer composites based on thermoplastic matrices. High Energy Chem. 43: 1–5, https://doi.org/10.1134/S001814390906006X. 10.1016/j.compscitech.2011.11.031 Sreekanth, P.S.R., Kumar, N.N., and Kanagaraj, S. (2012). Improving post irradiation stability of high density polyethylene by multi walled carbon nanotubes. Compos. Sci. Technol. 72: 390–396, https://doi.org/10.1016/j.compscitech.2011.11.031. 10.1016/j.nimb.2017.08.023 Stojilovic, N., Dordevic, S.V., and Stojadinovic, S. (2017). Effects of clinical X-ray irradiation on UHMWPE films. Nuclear Inst. Method. Phys. Res. B 410: 139–143, https://doi.org/10.1016/j.nimb.2017.08.023. Tikku, V.K. (2009). Electron beam crosslinking of rubbers and its applications. In: Presented at the 5th international conference, exhibition and reverse buyer–seller meet, India Rubber Expo., January, 28–31, Kolkata, India. Tikku, V.K., Bhattacharya, S., Sabharwal, S., and Bhowmick, A.K. (2003). Unpublished reports. NICCO Corporation Ltd., Calcutta, BARC, Mumbai and IIT Kharagpur, India. van Ooij, W.J., Zhang, N., Guo, S., and Luo, S. (1998). Paper presented at functional fillers and fibers for Plastics’98. June 15–17, Beijing, PRC. 10.1515/epoly-2013-0092 Valdis, K., Ingars, R., Janis, Z., Remo, M.–M., Juris, B., and Ivans, B. (2014). Radiation-chemically modified PP/CNT composites. e-Polymers 14: 259–265, https://doi.org/10.1515/epoly-2013-0092. Vasile, C. and Butnaru, E. (2017). Chapter #5, Radiation chemistry of organic solids. In: Sun, Y., and Chmielewski, A.G. (Eds.), Applications of ionizing radiation in materials processing. Institute of Nuclear Science and Technology, Warszawa, pp. 117–140. 10.1590/S1516-14392002000100006 Vidaurre, E.F.C., Achete, C.A., Gallo, F., Garcia, D., Simäo, R., and Habert, A.C. (2002). Surface modification of polymeric materials by plasma treatment. Mater. Res. 5: 37–41, https://doi.org/10.1590/S1516-14392002000100006. 10.1002/app.21256 Vijayabaskar, V. and Bhowmick, A.K. (2004). Electron-beam modification of nitrile rubber in the presence of polyfunctional monomers. J. Appl. Polym. Sci. 95: 435–447, https://doi.org/10.1002/app.21256. 10.5254/1.3547841 Vijayabaskar, V., Costa, F.R., and Bhowmick, A.K. (2004). Influence of electron beam irradiation as one of the mixed crosslinking systems on the structure and properties of nitrile rubber. Rubber Chem. Technol. 77: 624–645, https://doi.org/10.5254/1.3547841. 10.1016/j.radphyschem.2007.09.011 Vijayabaskar, V., Stephan, M., Kalaivani, S., Volke, S., Heinrich, G., Dorschner, H., Bhowmick, A.K., and Wagenknecht, U. (2008). Influence of radiation temperature on the crosslinking of nitrile rubber by electron beam irradiation. Radiat. Phys. Chem. 77: 511–521, https://doi.org/10.1016/j.radphyschem.2007.09.011. Wolf, S., Görl, U., Wang, M.-J., and Wolf, W. (1994). Silica-based tread compounds. Eur. Rubber J. 16–19: 176. 10.5254/1.3538304 Wolff, S., Wang, M.J., and Tan, E.H. (1993). Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber Chem. Technol. 66: 163–177, https://doi.org/10.5254/1.3538304. 10.1016/S0969-806X(01)00664-8 Woo, L. and Sandford, C.L. (2002). Comparison of electron beam radiation with gamma processing for medical packaging materials. Radiat. Phys. Chem. 63: 845–850, https://doi.org/10.1016/S0969-806X(01)00664-8. 10.1016/j.ultsonch.2019.104722 Yao, Y., Pan, Y., and Liu, S. (2020). Power ultrasound and its applications: a state-of-the-art review. Ultrasonics Sonochem 62: 104722, https://doi.org/10.1016/j.ultsonch.2019.104722. 10.1016/S0969-806X(96)00193-4 Yue, E.F., Xia, Z., Xuewu, G., and Tianyi, S. (1997). Radiation graft copolymerization of 2-hydroxyethyl methacrylate onto poly (γ-methyl-l-glutamate) membrane. Study of regularity of graft copolymerization in aqueous solution. Radiat. Phys. Chem. 49: 589–593, https://doi.org/10.1016/S0969-806X(96)00193-4. 10.1063/1.1857081 Yuzvinsky, T.D., Fennimore, A.M., Mickelson, W., Esquivias, C., and Zettl, A. (2005). Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86: 053109, https://doi.org/10.1063/1.1857081. 10.1103/PhysRevLett.79.3680 Zaiser, M. and Banhart, F. (1997). Radiation-induced transformation of graphite to diamond. Phys. Rev. Lett. 79: 3680–3683, https://doi.org/10.1103/PhysRevLett.79.3680.

Item Type: Article
Subjects: Bioengineering > Medical Imaging
Divisions: Bioengineering
Depositing User: Mr IR Admin
Date Deposited: 13 Sep 2024 05:33
Last Modified: 13 Sep 2024 05:33
URI: https://ir.vistas.ac.in/id/eprint/5789

Actions (login required)

View Item
View Item