Patan, Afroz and Aanandhi M., Vijey and P., Gopinath (2023) Molecular dynamics simulation approach of hybrid chalcone–thiazole complex derivatives for DNA gyrase B inhibition: lead generation. RSC Advances, 13 (35). pp. 24291-24308. ISSN 2046-2069
![[thumbnail of wos_257.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
wos_257.pdf
Download (1MB)
Abstract
Molecular dynamics simulation approach of hybrid chalcone–thiazole complex derivatives for DNA gyrase B inhibition: lead generation Afroz Patan Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, VISTAS, Chennai, Tamil Nadu, India http://orcid.org/0000-0001-6365-5336 Vijey Aanandhi M. Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, VISTAS, Chennai, Tamil Nadu, India Gopinath P. Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM University, Hyderabad, Telangana, India http://orcid.org/0000-0001-9641-9591
Compounds bearing thiazole and chalcone groups have been reported to be excellent leads for antibacterial, antitubercular and anticancer activities.
Compounds bearing thiazole and chalcone groups have been reported to be excellent leads for antibacterial, antitubercular and anticancer activities. In view of this, we performed quantitative structure–activity relationship studies using QSARINS for dataset preparation and for developing validated QSAR models that can predict novel series of thiazole–chalcone hybrids and further evaluate them for bioactivities. The molecular descriptors AATS8i, AVP-1, MoRSEE17 and GATSe7 were found to be active in predicting the structure–activity relationship. Molecular docking and dynamics simulation studies of the developed leads have shown insights into structural analysis. Furthermore, computational studies using AutoDock and Desmond predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compound 178 generated through this study creates a route for the optimization and development of novel drugs against tuberculosis infections. RMSD, RMSF, RoG, H-bond and SASA analysis confirmed the stable binding of compound 178 with the 6J90 structure. In addition, MM-PBSA and MM-GBSA also confirm the docking results. We propose the designed compound 178 as the best theoretical lead, which may further be experimentally studied for selective inhibition.
2023 24291 24308 1 10.1039/rsc_crossmark_policy rsc.org true http://creativecommons.org/licenses/by-nc/3.0/ 10.1039/D3RA00732D 20230814090245 https://xlink.rsc.org/?DOI=D3RA00732D http://pubs.rsc.org/en/content/articlepdf/2023/RA/D3RA00732D Eur. J. Med. Chem. Ayati 5 2015 10.1016/j.ejmech.2015.04.015 699 Curr. Top. Med. Chem. Chhabria 16 2016 10.2174/1568026616666160506130731 2841 Chem. Rev. Chunlin 117 2017 10.1021/acs.chemrev.7b00020 7762 J. Chem. Pharm. Res. Yazdan 7 2015 829 Eur. J. Med. Chem. De Santana 20 2018 10.1016/j.ejmech.2017.12.040 874 Int. J. Mol. Sci. Gomha 17 2016 10.3390/ijms17091499 1499 Biomolecules Takac 10 2020 10.3390/biom10020345 345 Molecules Gomha 20 2015 10.3390/molecules20011357 1357 Eur. J. Pharm. Sci. Patel 134 2019 10.1016/j.ejps.2019.04.005 20 Molecules Abu-Melha 24 2019 10.3390/molecules24030539 539 Bioorg. Chem. Farghaly 98 2020 10.1016/j.bioorg.2020.103761 103761 Molecules Altıntop 23 2018 10.3390/molecules23061318 1318 Mar. Drugs Spanò 14 2016 10.3390/md14120226 226 Arabian J. Chem. Shaik 14 2021 10.1016/j.arabjc.2020.102915 102915 Bioorg. Chem. Wang 95 2020 10.1016/j.bioorg.2019.103530 103530 Molecules Shaik 25 2020 10.3390/molecules25051047 1047 Saudi Pharm. J. Madhavi 25 2017 10.1016/j.jsps.2016.06.005 275 Molecules Rashdan 25 2020 10.3390/molecules25214997 4997 Lett. Org. Chem. Madhavi 13 2016 10.2174/1570178613666161021105317 682 Med. Chem. Res. Abhale 26 2017 10.1007/s00044-017-1955-1 2557 Bioorg. Med. Chem. Lett. Dhumal 26 2016 10.1016/j.bmcl.2016.05.093 3646 Turk. J. Pharm. Sci. Güzeldemirci 14 2017 10.4274/tjps.25743 157 Drug Dev. Res. Yan 81 2020 10.1002/ddr.21638 402 Sci. Pharm. Kryshchyshyn 86 2018 10.3390/scipharm86020026 26 J. Heterocycl. Chem. Gundlewad 55 2018 10.1002/jhet.3098 769 Molecules Shaik 25 2020 10.3390/molecules25143188 3188 Med. Chem. Res. Pola 29 2020 10.1007/s00044-020-02602-8 1819 J. Enzyme Inhib. Med. Chem. Burmaoglu 32 2017 10.1080/14756366.2016.1265517 490 Molecules Borcea 26 2021 10.3390/molecules26030624 624 Res. J. Pharm., Biol. Chem. Sci. Kishor 8 2017 730 Indian J. Pharm. Educ. Res. Lokesh 51 2017 10.5530/ijper.51.4s.99 679 Molecules Asiri 16 2011 10.3390/molecules16010523 523 NeuroQuantology Kadhim 18 2020 10.14704/nq.2020.18.1.NQ20102 16 Molecules Kucerova-Chlupacova 21 2016 10.3390/molecules21111421 1421 Int. J. Med. Chem. Shaik 2017 2017 6873924 Bioorg. Med. Chem. Singh 27 2019 10.1016/j.bmc.2018.11.038 188 Biointerface Res. Appl. Chem. Shaik 9 2019 10.33263/BRIAC93.912918 3912 Mol. Diversity Mellado 3 2019 1 Int. J. Life Sci. Pharma Res. Lagu 9 2019 54 Chem.-Biol. Interact. Djukic 286 2018 10.1016/j.cbi.2018.03.013 119 ChemistrySelect Adole 5 2020 10.1002/slct.201904609 2778 Molecules Nastasa 20 2015 10.3390/molecules200917325 17325 Bioorg. Chem. Polo 90 2019 10.1016/j.bioorg.2019.103034 103034 Acta Pharm. Sin. B Wang 9 2019 10.1016/j.apsb.2019.01.003 335 Molecules Al Zahrani 25 2020 10.3390/molecules25194566 4566 Front. Microbiol. Sun 8 2017 10.3389/fmicb.2017.00855 855 J. Heterocycl. Chem. Abdel-Latif 56 2019 10.1002/jhet.3577 1978 Int. J. Adv. Pharm. Sci. Vegesna 8 2017 11 Molecules Özdemir 22 2017 10.3390/molecules22122112 2112 RSC Adv. Tang 9 2019 10.1039/C9RA00618D 6011 Pharmaceuticals Lagu 13 2020 10.3390/ph13110375 375 Bioorg. Med. Chem. Lett. Reddy 28 2018 10.1016/j.bmcl.2018.03.033 1278 Arabian J. Chem. Khan 10 2017 10.1016/j.arabjc.2013.11.018 S2890 ACS Omega Zhang 3 2018 10.1021/acsomega.8b03174 18343 Chem. Heterocycl. Compd. Gomtsyan 48 2012 10.1007/s10593-012-0960-z 7 Curr. Med. Chem. Viegas-Junior 14 2007 10.2174/092986707781058805 1829 ACS Med. Chem. Lett. Sashidhara 6 2015 10.1021/acsmedchemlett.5b00169 809 ACS Med. Chem. Lett. Sinha 10 2019 10.1021/acsmedchemlett.9b00193 1415 J. Comput. Chem. Gramatica 34 2013 2121 10.1002/jcc.23361 Int. J. Quant. Struct.-Prop. Relat. Gramatica 5 3 2020 61 10.4018/IJQSPR.20200701.oa1 J. Comput. Chem. Gramatica 35 2014 1036 10.1002/jcc.23576 Bioorg. Med. Chem. Liaras 19 10 2011 10.1016/j.bmc.2011.04.007 3135 Curr. Top. Med. Chem. Tratrat 21 4 2021 257 10.2174/1568026621999201214232458 J. Cheminf. Hanwell 4 2012 17 10.1186/1758-2946-4-17 J. Cheminf. O’Boyle 3 2011 33 10.1186/1758-2946-3-33 J. Cheminf. Dong 7 2015 60 10.1186/s13321-015-0109-z J. Chem. Inf. Model. Gramatica 56 6 2016 1127 10.1021/acs.jcim.6b00088 Sci. Rep. Daina 7 2017 42717 10.1038/srep42717 J. Chem. Inf. Model. Cheng 52 11 2012 3099 10.1021/ci300367a Nucleic Acids Res. Banerjee 46 W1 2018 W257 10.1093/nar/gky318 J. Chem. Inf. Model. Eberhardt 61 8 2021 3891 10.1021/acs.jcim.1c00203 Curr. Protoc. Bioinf. Eswar 2006 10.1002/0471250953.bi0506s15 https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/visualization/ ACS Omega Ivanova 3 9 2018 11407 10.1021/acsomega.8b01524 Eur. J. Med. Chem. Broto 19 1984 66 https://www.epa.gov/sites/default/files/2015-05/documents/moleculardescriptorsguide-v102.pdf J. Mol. Graphics Modell. Devinyak 54 2014 194 10.1016/j.jmgm.2014.10.006
Item Type: | Article |
---|---|
Subjects: | Pharmaceutical Chemistry and Analysis > Pharmaceutical Chemistry |
Domains: | Pharmaceutical Chemistry and Analysis |
Depositing User: | Mr IR Admin |
Date Deposited: | 10 Sep 2024 11:54 |
Last Modified: | 10 Sep 2024 11:54 |
URI: | https://ir.vistas.ac.in/id/eprint/5488 |