Biosynthesis of Co3O4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities

Gowthami, P. and Kosiha, A. and Meenakshi, S. and Boopathy, G. and Ramu, A. G. and Choi, Dongjin (2023) Biosynthesis of Co3O4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities. Scientific Reports, 13 (1). ISSN 2045-2322

[thumbnail of wos_253.pdf] Archive
wos_253.pdf

Download (4MB)

Abstract

Biosynthesis of Co3O4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities P. Gowthami A. Kosiha S. Meenakshi G. Boopathy A. G. Ramu Dongjin Choi Abstract

Nanotechnology is a relatively revolutionary area that generates day-to-day advancement. It makes a significant impact on our daily life. For example, in parasitology, catalysis and cosmetics, nanoparticles possess distinctive possessions that make it possible for them in a broad range of areas. We utilized Mollugo oppositifolia L. aqueous leaf extract assisted chemical reduction method to synthesize Co 3 O 4 nanoparticles. Biosynthesized Co 3 O 4 Nps were confirmed via UV–Vis spectroscopy, scanning electron microscope, X-ray diffraction, EDX, Fourier-transform infrared, and HR-TEM analysis. The crystallite size from XRD studies revealed around 22.7 nm. The biosynthesized Co 3 O 4 nanoparticle was further assessed for mosquito larvicidal activity against south-urban mosquito larvae Culex quinquefasciatus , and antimicrobial activities. The synthesized Co 3 O 4 particle ( 2 ) displayed significant larvicidal activity towards mosquito larvae Culex quinquefasciatus with the LD 50 value of 34.96 µg/mL than aqueous plant extract ( 1 ) and control Permethrin with the LD 50 value of 82.41 and 72.44 µg/mL. When compared to the standard antibacterial treatment, Ciprofloxacin, the Co 3 O 4 nanoparticle ( 2 ) produced demonstrates significantly enhanced antibacterial action against the pathogens E. coli and B. cereus . The MIC for Co 3 O 4 nanoparticles 2 against C. albicans was under 1 μg/mL, which was much lower than the MIC for the control drug, clotrimale, which was 2 µg per milliliter. Co 3 O 4 nanoparticles 2, with a MIC of 2 μg/mL, has much higher antifungal activity than clotrimale, whose MIC is 4 μg/mL, against M. audouinii .
06 02 2023 9002 35877 1 10.1007/springer_crossmark_policy link.springer.com false 23 March 2023 25 May 2023 2 June 2023 The authors declare no competing interests. Hongik University Project S3091857 https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 10.1038/s41598-023-35877-z 20230602180105838 https://www.nature.com/articles/s41598-023-35877-z https://www.nature.com/articles/s41598-023-35877-z.pdf https://www.nature.com/articles/s41598-023-35877-z.pdf https://www.nature.com/articles/s41598-023-35877-z Parasitol. Res. G Benelli 114 2801 2015 10.1007/s00436-015-4586-9 Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 114, 2801–2805. https://doi.org/10.1007/s00436-015-4586-9 (2015). N. Engl. J. Med. MS Fradin 347 13 2002 10.1056/NEJMoa011699 Fradin, M. S. & Day, J. F. Comparative efficacy of insect repellents against mosquitoes bites. N. Engl. J. Med. 347, 13–18. https://doi.org/10.1056/NEJMoa011699 (2002). Wien Klin Wochenschr G Wernsdorfer 115 2 2003 Wernsdorfer, G. & Wernsdorfer, W. H. Malaria at the turn from the 2nd to the 3rd millenium. Wien Klin Wochenschr 115, 2–9 (2003). Physiotherapy L Bernhard 89 743 2003 10.1016/S0031-9406(05)60500-7 Bernhard, L., Bernhard, P. & Magnussen, P. Management of patients with lymphoedema caused by filariasis in north-eastern Tanzania: Alternative approaches. Physiotherapy 89, 743–749. https://doi.org/10.1016/S0031-9406(05)60500-7 (2003). J. Biomed. Mater. Res. QL Feng 52 662 2000 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 Feng, Q. L. et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–666 (2000). Parasitol. Res. G Suganya 113 875 2014 10.1007/s00436-013-3718-3 Suganya, G., Karthi, S. & Shivakumar, M. S. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol. Res. 113, 875–880 (2014). Toxicol. Res. R Foldbjerg 4 563 2015 10.1039/C4TX00110A Foldbjerg, R. et al. Silver nanoparticles-wolves in sheep’s clothing?. Toxicol. Res. 4, 563–575 (2015). Int. J. Sci. Nat. N Marwa Thamer 8 303 2017 Marwa Thamer, N., Mahmood, E. A. & Hussam, E. The effect of silver nanoparticles on second larval instar of Trogoderma granarium everts (Insecta: Coleoptera: Dermrstidae). Int. J. Sci. Nat. 8, 303–307 (2017). Saudi J. Biol. Sci. FA Al-Mekhlafi 25 52 2018 10.1016/j.sjbs.2017.02.010 Al-Mekhlafi, F. A. Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J. Biol. Sci. 25, 52–56 (2018). Environ. Sci. Pollut. Res. D Kumar 27 25987 2020 10.1007/s11356-020-08444-6 Kumar, D., Kumar, P., Singh, H. & Agrawal, V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: Prospects and challenges. Environ. Sci. Pollut. Res. 27, 25987–26024 (2020). N. Engl. J. Med. F Lowy 339 520 1998 10.1056/NEJM199808203390806 Lowy, F. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532. https://doi.org/10.1056/NEJM199808203390806 (1998). Malawi Med. J. OO Komolafe 15 63 2003 10.4314/mmj.v15i2.10780 Komolafe, O. O. Antibiotic resistance in bacteria—An emerging public health problem. Malawi Med. J. 15, 63–67. https://doi.org/10.4314/mmj.v15i2.10780 (2003). Nanomedicine B Hamed 18 221 2019 10.1016/j.nano.2019.02.017 Hamed, B. et al. Nanobiotechnology as an emerging approach to combat malaria: A systematic review. Nanomedicine 18, 221–233 (2019). Cooke, T. The flora of the presidency of Bombay. London (BS l. Reprint, Calcutta, Vol. I-lll, 1901–1908 (1958). Sahu, S. K., Das, D. & Tripathy, N. K. Pharmacognostical and physico-chemical studies on the leaf of Mollugo pentaphylla L. 4, 1821–1825 (2014). J. Magn. Magn. Mater. T Ozkaya 321 2145 2009 10.1016/j.jmmm.2009.01.003 Ozkaya, T., Baykal, A., Toprak, M. S., Koseoglu, Y. & Durmus, Z. Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. J. Magn. Magn. Mater. 321, 2145–2149. https://doi.org/10.1016/j.jmmm.2009.01.003 (2009). Nanomedicine RM Pearson 18 282 2019 10.1016/j.nano.2018.10.001 Pearson, R. M. et al. Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. Nanomedicine 18, 282–291 (2019). Nanomedicine M Kiani 30 102297 2020 10.1016/j.nano.2020.102297 Kiani, M. et al. High-gravity-assisted green synthesis of palladium nanoparticles: The flowering of nanomedicine. Nanomedicine 30, 102297 (2020). J. Phys. Chem. Solids. MS Niasari 70 847 2009 10.1016/j.jpcs.2009.04.006 Niasari, M. S., Mir, N. & Davar, F. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. J. Phys. Chem. Solids. 70, 847–852. https://doi.org/10.1016/j.jpcs.2009.04.006 (2009). J. Mater. Res. Bull. WW Wang 40 1929 2005 10.1016/j.materresbull.2005.06.004 Wang, W. W. & Zhu, Y. Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods. J. Mater. Res. Bull. 40, 1929–1935. https://doi.org/10.1016/j.materresbull.2005.06.004 (2005). J. Mol. Catal. A Chem. SC Petitto 281 49 2008 10.1016/j.molcata.2007.08.023 Petitto, S. C., Marsh, E. M., Carson, G. A. & Langell, M. A. Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water. J. Mol. Catal. A Chem. 281, 49–58. https://doi.org/10.1016/j.molcata.2007.08.023 (2008). Solid State Sci. L Sun 11 108 2009 10.1016/j.solidstatesciences.2008.05.013 Sun, L., Li, H., Ren, L. & Hu, C. Synthesis of Co3O4 nanostructures using a solvothermal approach. Solid State Sci. 11, 108–112. https://doi.org/10.1016/j.solidstatesciences.2008.05.013 (2009). Surf. Sci. P Torelli 601 2651 2007 10.1016/j.susc.2006.11.063 Torelli, P. et al. Nano-structuration of CoO film by misfit dislocations. Surf. Sci. 601, 2651–2655. https://doi.org/10.1016/j.susc.2006.11.063 (2007). Nature X Xie 458 746 2009 10.1038/nature07877 Xie, X., Li, Y., Liu, Z. Q., Haruta, M. & Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749. https://doi.org/10.1038/nature07877 (2009). Mater. Res. Bull. R Metz 44 1984 2009 10.1016/j.materresbull.2009.06.006 Metz, R., Morel, J., Delalu, H., Ananthakumar, S. & Hasanzadeh, M. Direct oxidation route from metal to ceramic: Study on cobalt oxide. Mater. Res. Bull. 44, 1984–1989. https://doi.org/10.1016/j.materresbull.2009.06.006 (2009). Thermochim. Acta CW Tang 473 68 2008 10.1016/j.tca.2008.04.015 Tang, C. W., Wang, C. B. & Chien, S. H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473, 68–73. https://doi.org/10.1016/j.tca.2008.04.015 (2008). Sens. Actuators B Chem. J Park 136 494 2009 10.1016/j.snb.2008.11.041 Park, J., Shen, X. & Wang, G. Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens. Actuators B Chem. 136, 494–498. https://doi.org/10.1016/j.snb.2008.11.041 (2009). Adv. Funct. Mater. WY Li 15 851 2005 10.1002/adfm.200400429 Li, W. Y., Xu, L. N. & Chen, J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851–857. https://doi.org/10.1002/adfm.200400429 (2005). Appl. Catal. B Environ. B Solsona 84 176 2008 10.1016/j.apcatb.2008.03.021 Solsona, B. et al. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Appl. Catal. B Environ. 84, 176–184. https://doi.org/10.1016/j.apcatb.2008.03.021 (2008). Microporous Mesoporous Mater. Y Zhang 114 257 2008 10.1016/j.micromeso.2008.01.011 Zhang, Y., Chen, Y., Wang, T., Zhou, J. & Zhao, Y. Synthesis and magnetic properties of nanoporous Co3O4 nanoflowers. Microporous Mesoporous Mater. 114, 257–261. https://doi.org/10.1016/j.micromeso.2008.01.011 (2008). J. Alloys Compd. P Zhan 478 823 2009 10.1016/j.jallcom.2008.12.025 Zhan, P. Large scale hydrothermal synthesis of β-Co(OH)2 hexagonal nanoplates and their conversion into porous Co3O4 nanoplates. J. Alloys Compd. 478, 823–826. https://doi.org/10.1016/j.jallcom.2008.12.025 (2009). Solid State Commun. K Venkatesvara Rao 148 32 2008 10.1016/j.ssc.2008.07.020 Venkatesvara Rao, K. & Sunandana, C. S. Co3O4 nanoparticles by chemical combustion: Effect of fuel to oxidizer ratio on structure, microstructure and EPR. Solid State Commun. 148, 32–37. https://doi.org/10.1016/j.ssc.2008.07.020 (2008). Mater. Lett. WH Li 62 4149 2008 10.1016/j.matlet.2008.06.032 Li, W. H. Microwave-assisted hydrothermal synthesis and optical property of Co3O4 nanorods. Mater. Lett. 62, 4149–4151. https://doi.org/10.1016/j.matlet.2008.06.032 (2008). Ultrason. Sonochem. A Askarinejad 16 124 2009 10.1016/j.ultsonch.2008.05.015 Askarinejad, A. & Morsali, A. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem. 16, 124–131. https://doi.org/10.1016/j.ultsonch.2008.05.015 (2009). Nanomedicine L Karthik 9 7 951 2013 10.1016/j.nano.2013.02.002 Karthik, L. et al. Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 9(7), 951–960 (2013). J. Mater. Sci. Lett. L Zhang 21 1931 2002 10.1023/A:1021656529934 Zhang, L. & Xue, D. Preparation and magnetic properties of pure CoO nanoparticles. J. Mater. Sci. Lett. 21, 1931–1933. https://doi.org/10.1023/A:1021656529934 (2002). J. Alloys Compd. Y Yu 471 268 2009 10.1016/j.jallcom.2008.03.074 Yu, Y., Ji, G., Cao, J., Liu, J. & Zheng, M. Facile synthesis, characterization and electrochemical properties of cuspate deltoid CoO crystallites. J. Alloys Compd. 471, 268–271. https://doi.org/10.1016/j.jallcom.2008.03.074 (2009). J. Colloid Interface Sci. J Liu 505 789 2017 10.1016/j.jcis.2017.06.081 Liu, J., Wang, Z., Yan, X. & Jian, P. Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance. J. Colloid Interface Sci. 505, 789–795 (2017). Nanoscale Y Su 6 15080 2014 10.1039/C4NR04357J Su, Y. et al. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6, 15080–15089 (2014). Chem. Commun. M Azharuddin 55 6964 2019 10.1039/C9CC01741K Azharuddin, M. et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 55, 6964–6996 (2019). Int. J. Pharm. Sci. Rev. Res. A Aseri 31 119 2015 Aseri, A., Garg, S. K., Nayak, A., Trivedi, S. K. & Ahsan, J. Magnetic nanoparticles: Magnetic nano-technology using biomedical applications and future prospects. Int. J. Pharm. Sci. Rev. Res. 31, 119–131 (2015). Molecules I Liakos 19 12710 2014 10.3390/molecules190812710 Liakos, I., Grumezescu, A. M. & Holban, A. M. Magnetite nanostructures as novel strategies for anti-infectious therapy. Molecules 19, 12710–12726 (2014). Pharmaceutics. NE Eleraky 12 142 2020 10.3390/pharmaceutics12020142 Eleraky, N. E., Allam, A., Hassan, S. B. & Omar, M. M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics. 12, 142 (2020). Phys. Rev. Lett. JS Yin 29 2570 1997 10.1103/PhysRevLett.79.2570 Yin, J. S. & Wang, Z. L. Ordered self-assembling of tetrahedral oxide nanocrystals. Phys. Rev. Lett. 29, 2570–2573. https://doi.org/10.1103/PhysRevLett.79.2570 (1997). Mater. Lett. Y Ye 60 3175 2006 10.1016/j.matlet.2006.02.062 Ye, Y., Yuan, F. & Li, S. Synthesis of CoO nanoparticles by esterification reaction under solvothermal conditions. Mater. Lett. 60, 3175–3178. https://doi.org/10.1016/j.matlet.2006.02.062 (2006). Chem. Mater. M Ghosh 17 2348 2005 10.1021/cm0478475 Ghosh, M., Sampathkumaran, E. V. & Rao, C. N. R. Synthesis and magnetic properties of CoO nanoparticles. Chem. Mater. 17, 2348–2352. https://doi.org/10.1021/cm0478475 (2005). Adv. Powder. Technol. Q Guo 21 529 2010 10.1016/j.apt.2010.02.003 Guo, Q., Guo, X. & Tian, Q. Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl2 solution via a versatile spray roasting method. Adv. Powder. Technol. 21, 529–533. https://doi.org/10.1016/j.apt.2010.02.003 (2010). Am. J. Clin. Pathol. AW Bauer 45 149 1966 10.1093/ajcp/45.4_ts.493 Bauer, A. W. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45, 149–158 (1966). Inorg. Chim. Acta. MB Ferrari 286 134 1999 10.1016/S0020-1693(98)00383-1 Ferrari, M. B. et al. Synthesis, structural characterization and biological activity of helicin thiosemicarbazone monohydrate and a copper(II) complex of salicylaldehyde thiosemicarbazone. Inorg. Chim. Acta. 286, 134–141. https://doi.org/10.1016/S0020-1693(98)00383-1 (1999). Spectrochim. Acta A. ZHA Wahab 60 2861 2004 10.1016/j.saa.2004.01.021 Wahab, Z. H. A., Mashaly, M. M., Salman, A. A., El-Shetary, B. A. & Faheim, A. A. Co(II), Ce(III) and UO2(VI) bis-salicylatothiosemicarbazide complexes: Binary and ternary complexes, thermal studies and antimicrobial activity. Spectrochim. Acta A. 60, 2861–2868. https://doi.org/10.1016/j.saa.2004.01.021 (2004). Org. Synth. VH Wallingford 19 52 1939 10.15227/orgsyn.019.0052 Wallingford, V. H. & Krueger, P. A. 5-iodoanthranilic acid. Org. Synth. 19, 52. https://doi.org/10.15227/orgsyn.019.0052 (1939). Am. J. Clin. Path. AW Bauer 45 493 1966 10.1093/ajcp/45.4_ts.493 Bauer, A. W., Kirby, W. W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Path. 45, 493 (1966).

Item Type: Article
Subjects: Chemistry > Inorganic Chemistry
Divisions: Chemistry
Depositing User: Mr IR Admin
Date Deposited: 10 Sep 2024 11:14
Last Modified: 10 Sep 2024 11:14
URI: https://ir.vistas.ac.in/id/eprint/5468

Actions (login required)

View Item
View Item