Madin-Darby Canine Kidney (MDCK) Cell line permeability of Curcumin loaded Phycocyanin nanosponges - In-Vitro study

Kasirajan, Manjuladevi and Velmurugan, Ramaiyan and Vijayalakshmi, A. (2022) Madin-Darby Canine Kidney (MDCK) Cell line permeability of Curcumin loaded Phycocyanin nanosponges - In-Vitro study. Journal of Experimental Biology and Agricultural Sciences, 10 (4). pp. 812-817. ISSN 2320-8694

[thumbnail of 107.pdf] Archive
107.pdf

Download (447kB)

Abstract

Madin-Darby Canine Kidney (MDCK) Cell line permeability of Curcumin loaded Phycocyanin nanosponges - In-Vitro study Manjuladevi Kasirajan Ramaiyan Velmurugan A. Vijayalakshmi

Blood Brain barrier (BBB) is a natural protective wall in the brain to restrict the invasion of xenobiotics or toxic chemicals. This, in turn, becomes a major obstacle for researchers and industry people in formulating new drugs to treat brain disorders like brain tumors, Alzheimer's disease, multiple sclerosis, meningitis, and so on. The purpose of this research is to study the in-vitro cytotoxicity & BBB permeation of curcumin-loaded phycocyanin nanosponges (Cur-PC NS) using Madin-Darby Canine Kidney (MDCK) cell lines. Cell viability of Cur-PC NS was performed using 3-(4,5-dimethylthiazol-2-yl)-2.5- diphenyltetrazolium bromide (MTT) assay, the transepithelial electrical resistance (TEER) values, and permeability coefficient were measured to test the integrity of monolayer of MDCK cell line. Results of the current study showed that Cur-PC NS at 50µM, 85% of MDCK cells are more viable and there was a significant (p<0.01) reduction in TEER values up to 48 hours when compared to the curcumin. The permeability coefficient of nanosponges produced a 2.5-fold increase in enhancement ratio with a Papp value of 1.94±0.11×10-6 cm/s and 4.86±0.04×10-6cm/s for curcumin and Cur-PC NS respectively. Results of the study can be concluded that phycocyanin nanosponges can be used as a carrier for curcumin to permeate the BBB which may play a major role in the treatment of various brain disorders. Future studies are needed to substantiate the exact mechanism of permeability with clarification of efflux transporters presented in BBB.
08 30 2022 812 817 v2.0 10.18006/jebas.crossmarkpolicy www.jebas.org false 10.18006/2022.10(4).812.817 https://jebas.org/ojs/index.php/jebas/article/view/813 https://jebas.org/ojs/index.php/jebas/article/download/813/234 https://jebas.org/ojs/index.php/jebas/article/download/813/234 10.1016/j.drudis.2016.05.020 Banerjee, J., Shi, Y., & Azevedo, H. S. (2016). In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discovery Today, 21(9), 1367-1386 10.3390/biom9020056 Del Prado-Audelo, M. L., Caballero-Florán, I. H., Meza-Toledo, J. A., Mendoza-Muñoz, N., et al. (2019). Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 9(2), 56 10.1002/slct.201904007 Gharakhloo, M., Sadjadi, S., Rezaeetabar, M., Askari, F., Rahimi, A., et al. (2020). Cyclodextrin-based nanosponges for improving solubility and sustainable release of curcumin. Biological Chemistry & Chemical Biology, Chemistry Select, 5, 1734–1738 10.1016/S0021-9258(18)63784-6 Horio, M., Chin, K.V., Currier, S J., & Goldenberg, S., et al. (1989). Transepithelial Transport of Drugs by the Multidrug Transporter in Cultured Madin-Darby Canine Kidney Cell Epitheli. Journal of Biological Chemistry, 264(25), 14880-14884 10.1021/js9803205 Irvine, J D., Takahashi, L., Lockhart, K., Cheong, J., et al. (1999). MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Journal of Pharmaceutical Sciences, 88, 28-33 10.1002/prp2.932 Jiang, L., Kumar, S., Nuechterlein, M., Reyes, M., et al. (2022). Application of a high-resolution in vitro human MDR1-MDCK assay and in vivo studies in preclinical species to improve prediction of CNS drug penetration. Pharmacology Research & Perspectives, 10(1), e00932 10.7150/jca.21058 Jiang, L., Wang, Y., Yin, Q., Liu, G., et al. (2017). Phycocyanin: A Potential Drug for Cancer Treatment. Journal of Cancer, 8(17), 3416–3429 10.1186/s12987-020-00230-3 Kadry, H., Behnam, N., & Luca, C. (2020). A blood–brain barrier overview on structure function, impairment and biomarkers of integrity. Fluids Barriers CNS, 17, 69 10.1602/neurorx.2.1.86 Löscher, W., & Potschka, H. (2005). Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx: The Journal of the American Society for Experimental Neuro Therapeutics, 2(1), 86–98 10.1002/ptr.7389 MalekiDizaj, S., Alipour, M., DalirAbdolahinia, E., Ahmadian, E., et al. (2022). Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytotherapy Research, 36(3), 1156– 1181 10.26452/ijrps.v11i4.4874 Manjuladevi, K., & Velmurugan, R., (2020). A perspective view on formulation and optimization of curcumin loaded phycocyanin nanosponges. International Journal of Research in Pharmaceutical Sciences , 11(4), 8119-8123 10.1155/2016/9324085 Neil, V. K., & Sandeep, M., (2016). Therapeutic potential of curcumin for the treatment of brain tumors. Oxidative Medicine and Cellular Longevity, 1, 1-14 10.3390/pharmaceutics13101542 Neumaier, F., Zlatopolskiy, B.D., & Neumaier, B. (2021). Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics, 13, 1542 Nikandish, N., Hosseinzadeh, L., HematiAzandaryani, A., & Derakhshandeh, K. (2016). The Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model. Iranian journal of Pharmaceutical Research, 15(2), 403–413. 10.1602/neurorx.2.1.3 Pardridge W. M. (2005). The blood-brain barrier: bottleneck in brain drug development. NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics, 2(1), 3–14 Polli, J.W., Humphreys, J.E., Wring, S.A., Burnette, T C., et al. (2000). Comparison of MDCK and bovine brain endothelial cells (BBECs) as a blood-brain barrier screen in early drug discovery. In M. Balls, A.M. van Zeller, & M Halder (Eds.) Progress in the Reduction, Refinement and Replacement of Animal Experimentation (pp 271–289), New York: Elsevier Science Prathima, S., & Sreeja, K. (2013). Formulation and Evaluation of Voriconazole loaded nanosponges for oral and topical delivery. International Journal of drug delivery and research, 5(1), 55-69 10.1016/j.jddst.2018.03.004 Pushpalatha, R., Selvamuthukumar, S., & Kilimozhi, D. (2018). Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. Journal of Drug Delivery Science and Technology, 45, 45–53 10.3390/ani11123521 Sánchez-Dengra, B., González-Álvarez, I., González-Álvarez, M., & Bermejo, M. (2021). New In-Vitro methodology for kinetics distribution prediction in the brain. An additional step towards an animal-free approach. Animals, 11(12), 3521 10.3390/polym12123055 Suresh, T., Fong, Y. C., & Chia, H. S. (2020). Advancements in the Blood–Brain Barrier Penetrating, Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers, 12, 3055 10.1039/D0MA00566E Susanna, G., Alice, C., Andrea, B., Riccardo A.. et al. (2020). Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate. Materials Advances, 1, 2501-2508 10.1016/S0928-0987(02)00015-5 Taub, M. E., Kristensen, L., & Frokjaer, S. (2002). Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I-IV. European Journal of Pharmaceutical Sciences: official journal of the European Federation for Pharmaceutical Sciences, 15(4), 331–340 10.2174/138161213805289219 Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2013). Curcumin nanomedicine: a road to cancer therapeutics. Current Pharmaceutical Design, 19(11), 1994–2010 10.2478/acph-2013-0021 Tejashri, G., Bajaj, A., & Jain, D. (2013). Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharmaceutica, 63, 335–358 Velmurugan, R., Manjuladevi, K., Keerthi, G., Yamuna, R., et al. (2019). A method to enhance blood brain barrier permeability of curcumin. The Patent office Journal No. 46/2019, Application No 201941045090A, 53972 10.1039/C6CC09541K Wan, D. H., Zheng, B. Y., Ke, M. R., Duan, J. Y., et al. (2017). C-Phycocyanin as a tumour-associated macrophage-targeted photosensitiser and a vehicle of phthalocyanine for enhanced photodynamic therapy. Chemical Communications (Cambridge, England), 53(29), 4112-4115 10.1248/bpb.b13-00591 Wang, M., Zhang, Y., Sun, B., Sun, Y., et al. (2014). Permeability of exendin-4-loaded chitosan nanoparticles across MDCK cell monolayers and rat small intestine. Biological & pharmaceutical bulletin, 37(5), 740–747 10.1016/j.biomaterials.2011.03.056 Yeh, T. H., Hsu, L. W., Tseng, M. T., Lee, P L., et al. (2011). Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials, 32, 6164–6173 10.1016/j.jnutbio.2011.02.015 Zanotto-Filho, A., Braganhol, E., Edelweiss, M. I., Behr, A G., et al. (2012). The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of Glioblastoma. The Journal of Nutritional Biochemistry, 23(6), 591-601

Item Type: Article
Subjects: Pharmaceutics > Pharmacognosy
Divisions: Pharmaceutics
Depositing User: Mr IR Admin
Date Deposited: 10 Sep 2024 10:02
Last Modified: 10 Sep 2024 10:02
URI: https://ir.vistas.ac.in/id/eprint/5448

Actions (login required)

View Item
View Item