Subramani, Parasuraman Aiya and Shaik, Firdose Begum and Michael, R. Dinakaran and Panati, Kalpana and Narala, Venkata Ramireddy (2022) Thiamine: A Natural Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) Activator. Letters in Drug Design & Discovery, 19 (10). pp. 888-896. ISSN 15701808
![[thumbnail of 76.pdf]](https://ir.vistas.ac.in/style/images/fileicons/archive.png)
76.pdf
Download (2MB)
Abstract
Thiamine: A Natural Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) Activator Parasuraman Aiya Subramani https://orcid.org/0000-0002-7394-5174 Firdose Begum Shaik R. Dinakaran Michael https://orcid.org/0000-0002-8105-745X Kalpana Panati https://orcid.org/0000-0002-0829-0917 Venkata Ramireddy Narala https://orcid.org/0000-0001-6672-4165 Background:
There has been increasing evidence of the correlation between thiamine deficiency and type 2 diabetes (T2D). T2D is a condition in which an individual’s insulin sensitivity is highly compromised. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcription factor etiologically relevant to T2D. We hypothesized that thiamine could be a PPAR-γ ligand and thus activate PPAR-γ and ameliorate T2D.
Objective:
This study aims to establish thiamine as a PPAR-γ ligand via molecular docking and dynamics simulations (MDS) and thiamine’s ability to induce adipogenesis while upregulating PPAR-γ and AP-2 genes using in vitro assays.
Methods:
Thiamine/PPAR-γ binding was studied using Schrödinger’s Glide. The bound complex was simulated in the OPLS 2005 force field using Desmond. 3T3-L1 preadipocyte cells were differentiated in the presence of thiamine and rosiglitazone and stained with Oil Red O. Nuclear protein from the differentiated cells was used to study the binding of the PPAR-γ response element (PPRE) using an ELISA-based assay. mRNA from differentiated cells was used to study the expression of genes using quantitative RTPCR.
Results:
In silico docking shows that thiamine binds with PPAR-γ. MDS indicate that the interactions between thiamine and PPAR-γ are stable over a significant period. Thiamine induces the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner and enhances the PPRE-binding activity of PPAR-γ. Thiamine treatment significantly increases the mRNA levels of PPAR-γ and AP-2 genes.
Conclusion:
Our results show that thiamine is a PPAR-γ ligand. Animal studies and clinical trials are required to corroborate the results obtained.
10 2022 888 896 LiveAll1 1 10.2174/BSP_crossmark_policy eurekaselect.com true Peer Reviewed Single blind Checked with iThenticate 2021-06-18 2021-10-12 2021-12-08 2022-07-27 Science and Engineering Research Board (SERB), Department of Science and Technology http://dx.doi.org/10.13039/501100001843 EMR/2017/000973 Council of Scientific and Industrial Research (CSIR), Government of India http://dx.doi.org/10.13039/501100001412 37(1488)/11 EMR-II 10.2174/1570180819666220127121403 https://www.eurekaselect.com/200591/article https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/article/download?doi=10.2174/1570180819666220127121403 https://www.eurekaselect.com/200591/article Diabetes Res Clin Pract Saeedi P. 157 107843 2019 10.1016/j.diabres.2019.107843 Saeedi P.; Petersohn I.; Salpea P.; Malanda B.; Karuranga S.; Unwin N.; Colagiuri S.; Guariguata L.; Motala A.A.; Ogurtsova K.; Shaw J.E.; Bright D.; Williams R.; Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019,157,107843 Front Immunol Frasca D. 8 1745 2017 10.3389/fimmu.2017.01745 Frasca D.; Blomberg B.B.; Paganelli R.; Aging, obesity, and inflammatory age-related diseases. Front Immunol 2017,8,1745 Crit Rev Food Sci Nutr Medina-Remón A. 58 262 2018 10.1080/10408398.2016.1158690 Medina-Remón A.; Kirwan R.; Lamuela-Raventós R.M.; Estruch R.; Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr 2018,58(2),262-296 Int J Cardiol Jia X. 283 144 2019 10.1016/j.ijcard.2018.10.102 Jia X.; Yang Y.; Chen Y.; Xia Z.; Zhang W.; Feng Y.; Li Y.; Tan J.; Xu C.; Zhang Q.; Deng H.; Shi X.; Multivariate analysis of ge-nome-wide data to identify potential pleiotropic genes for type 2 diabetes, obesity and coronary artery disease using MetaCCA. Int J Cardiol 2019,283,144-150 BMC Med Kolb H. 15 131 2017 10.1186/s12916-017-0901-x Kolb H.; Martin S.; Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med 2017,15(1),131 Curr Diab Rep Gulley L.D. 20 51 2020 10.1007/s11892-020-01334-8 Gulley L.D.; Shomaker L.B.; Depression in youth-onset Type 2 Diabetes. Curr Diab Rep 2020,20(10),51 Nutrients Manios Y. 12 1949 2020 10.3390/nu12071949 Manios Y.; Lambrinou, C-P.; Mavrogianni, C.; Cardon, G.; Lindström, J.; Iotova, V.; Tankova, T.; Rurik, I.; Stappen, V.V.; Kivelä, J.; Mateo-Gallego, R.; Moreno, L.A.; Makrilakis, K.; Androutsos, O. Lifestyle changes observed among adults participating in a family- and community-based intervention for diabetes prevention in Europe: The 1st year results of the feel4diabetes-study. Nutrients 2020,12(7),1949 Diabetes Obes Metab Gibbons C. 23 581 2021 10.1111/dom.14255 Gibbons C.; Blundell J.; Tetens Hoff S.; Dahl K.; Bauer R.; Baekdal T.; Effects of oral semaglutide on energy intake, food preference, appetite, control of eating and body weight in subjects with type 2 diabetes. Diabetes Obes Metab 2021,23(2),581-588 BMJ Open Diabetes Res Care MacDonald C.S. 9 e001840 2021 10.1136/bmjdrc-2020-001840 MacDonald C.S.; Nielsen S.M.; Bjørner J.; Johansen M.Y.; Christensen R.; Vaag A.; Lieberman D.E.; Pedersen B.K.; Langberg H.; Ried-Larsen M.; Midtgaard J.; One-year intensive lifestyle intervention and improvements in health-related quality of life and mental health in persons with type 2 diabetes: A secondary analysis of the U-TURN randomized controlled trial. BMJ Open Diabetes Res Care 2021,9(1),e001840 Ann Nutr Metab Carpenter K.J. 61 219 2012 10.1159/000343109 Carpenter K.J.; The discovery of thiamin. Ann Nutr Metab 2012,61(3),219-223 Curr Opin Struct Biol Fitzpatrick T.B. 29 34 2014 10.1016/j.sbi.2014.08.014 Fitzpatrick T.B.; Thore S.; Complex behavior: From cannibalism to suicide in the vitamin B1 biosynthesis world. Curr Opin Struct Biol 2014,29,34-43 Nutr Metab Cardiovasc Dis Eshak E.S. 28 965 2018 10.1016/j.numecd.2018.06.013 Eshak E.S.; Arafa A.E.; Thiamine deficiency and cardiovascular disorders. Nutr Metab Cardiovasc Dis 2018,28(10),965-972 Int J Clin Pract Page G.L. 65 684 2011 10.1111/j.1742-1241.2011.02680.x Page G.L.; Laight D.; Cummings M.H.; Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose me-tabolism and vascular disease. Int J Clin Pract 2011,65(6),684-690 J Med Food Karkabounas S. 21 1197 2018 10.1089/jmf.2018.0007 Karkabounas S.; Papadopoulos N.; Anastasiadou C.; Gubili C.; Peschos D.; Daskalou T.; Fikioris N.; Simos Y.V.; Kontargiris E.; Gianakopoulos X.; Ragos V.; Chatzidimitriou M.; Effects of α-lipoic acid, carnosine, and thiamine supplementation in obese patients with type 2 diabetes mellitus: A randomized, double-blind study. J Med Food 2018,21(12),1197-1203 Diabetes Vasc Dis Res Beltramo E. 17 1479164119878427 2020 10.1177/1479164119878427 Beltramo E.; Mazzeo A.; Lopatina T.; Trento M.; Porta M.; Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy. Diabetes Vasc Dis Res 2020,17(1),1479164119878427 Diabetes Jungtrakoon P. 68 1084 2019 10.2337/db17-0821 Jungtrakoon P.; Shirakawa J.; Buranasupkajorn P.; Gupta M.K.; De Jesus D.F.; Pezzolesi M.G.; Panya A.; Hastings T.; Chanprasert C.; Mendonca C.; Kulkarni R.N.; Doria A.; Loss-of-function mutation in thiamine transporter 1 in a family with autosomal dominant dia-betes. Diabetes 2019,68(5),1084-1093 Acta Diabetol Beltramo E. 45 131 2008 10.1007/s00592-008-0042-y Beltramo E.; Berrone E.; Tarallo S.; Porta M.; Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol 2008,45(3),131-141 Wiadomosci lekarskie (Warsaw, Poland: 1960) Malecka S.A. 59 383-387 2006 Malecka S.A.; Poprawski K.; Bilski B.; Prophylactic and therapeutic application of thiamine (vitamin B1)-a new point of view. Wiadomosci lekarskie (Warsaw, Poland: 1960) 2006,59(5-6),383-387 Diabetes Obes Metab Rabbani N. 13 577 2011 10.1111/j.1463-1326.2011.01384.x Rabbani N.; Thornalley P.J.; Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diabetes Obes Metab 2011,13(7),577-583 Ann N Y Acad Sci Karachalias N. 1043 777 2005 10.1196/annals.1333.090 Karachalias N.; Babaei-Jadidi R.; Kupich C.; Ahmed N.; Thornalley P.J.; High-dose thiamine therapy counters dyslipidemia and ad-vanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci 2005,1043,777-783 Curr Diabetes Rev Thornalley P.J. 1 287 2005 10.2174/157339905774574383 Thornalley P.J.; The potential role of thiamine. The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Rev 2005,1(3),287-298 Am J Clin Nutr Hoyumpa A.M. 33 2750 1980 10.1093/ajcn/33.12.2750 Hoyumpa A.M.; Mechanisms of thiamin deficiency in chronic alcoholism. Am J Clin Nutr 1980,33(12),2750-2761 Fortschr Neurol Psychiatr Vieregge P. 55 130 1987 10.1055/s-2007-1001815 Vieregge P.; Stuhlmann W.; Diabetic coma and Wernicke-Korsakoff syndrome. On the clinical significance of acquired thiamine deficien-cy. Fortschr Neurol Psychiatr 1987,55(4),130-139 Am J Ther Bermúdez V. 17 274 2010 10.1097/MJT.0b013e3181c08081 Bermúdez V.; Finol F.; Parra N.; Parra M.; Pérez A.; Peñaranda L.; Vílchez D.; Rojas J.; Arráiz N.; Velasco M.; PPAR-gamma ago-nists and their role in type 2 diabetes mellitus management. Am J Ther 2010,17(3),274-283 Endocr Metab Immune Disord Drug Targets Subramani P.A. 13 175 2013 10.2174/18715303113139990003 Subramani P.A.; Reddy M.C.; Narala V.R.; The need for physiologically relevant peroxisome proliferator-activated receptor-gamma (PPAR-γ) ligands. Endocr Metab Immune Disord Drug Targets 2013,13(2),175-183 Pharmacol Res Balakumar P. 61 482 2010 10.1016/j.phrs.2010.02.008 Balakumar P.; Rohilla A.; Krishan P.; Solairaj P.; Thangathirupathi A.; The multifaceted therapeutic potential of benfotiamine. Pharmacol Res 2010,61(6),482-488 Nature Nolte R.T. 395 137 1998 10.1038/25931 Nolte R.T.; Wisely G.B.; Westin S.; Cobb J.E.; Lambert M.H.; Kurokawa R.; Rosenfeld M.G.; Willson T.M.; Glass C.K.; Milburn M.V.; Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 1998,395(6698),137-143 J Comput Aided Mol Des Sastry G.M. 27 221 2013 10.1007/s10822-013-9644-8 Sastry G.M.; Adzhigirey M.; Day T.; Annabhimoju R.; Sherman W.; Protein and ligand preparation: parameters, protocols, and influ-ence on virtual screening enrichments. J Comput Aided Mol Des 2013,27(3),221-234 J Comput Chem Banks J.L. 26 1752 2005 10.1002/jcc.20292 Banks J.L.; Beard H.S.; Cao Y.; Cho A.E.; Damm W.; Farid R.; Felts A.K.; Halgren T.A.; Mainz D.T.; Maple J.R.; Murphy R.; Philipp D.M.; Repasky M.P.; Zhang L.Y.; Berne B.J.; Friesner R.A.; Gallicchio E.; Levy R.M.; Integrated Modeling Program, Applied Chemical Theory (IMPACT). J Comput Chem 2005,26(16),1752-1780 Inform and Model-ing Laskowski R.A. 51 2778 2011 10.1021/ci200227u Laskowski R.A.; Swindells M.B.; LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inform and Model-ing 2011,51(10),2778-2786 Bowers K.J. 10.1145/1188455.1188544 Bowers K.J.; Chow E.; Xu H.; Dror R.O.; Eastwood M.P.; Gregersen B.A.; Klepeis J.L.; Kolossvary I.; Moraes M.A.; Sacerdoti F.D.; Salmon J.K.; Shan Y.; Shaw D.E.; Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 11-17 Nov. 2006 Tampa, Florida In: Intermolecular Forces Berendsen H.J.C. Vol. 14 331 1981 10.1007/978-94-015-7658-1_21 Berendsen H.J.C.; Postma J.P.M.; van Gunsteren W.F.; Hermans J.; In: Intermolecular Forces 1981,Vol. 14,331-342 J Chem Phys Evans D.J. 83 4069 1985 10.1063/1.449071 Evans D.J.; Holian B.L.; The Nose–Hoover thermostat. J Chem Phys 1985,83(8),4069-4074 J Chem Phys Martyna G.J. 101 4177 1994 10.1063/1.467468 Martyna G.J.; Tobias D.J.; Klein M.L.; Constant pressure molecular dynamics algorithms. J Chem Phys 1994,101(5),4177-4189 J Chem Phys Essmann U. 103 8577 1995 10.1063/1.470117 Essmann U.; Perera L.; Berkowitz M.L.; Darden T.; Lee H.; Pedersen L.G.; A smooth particle mesh Ewald method. J Chem Phys 1995,103(19),8577-8593 Int Immunopharmacol Panati K. 72 159 2019 10.1016/j.intimp.2019.04.001 Panati K.; Subramani P.A.; Reddy M.M.; Derangula M.; Arva Tatireddigari V.R.R.; Kolliputi N.; Narala V.R.; The nitrated fatty acid, 10-nitrooleate inhibits the neutrophil chemotaxis via peroxisome proliferator-activated receptor gamma in CLP-induced sepsis in mice. Int Immunopharmacol 2019,72,159-165 Lancet Diabetes Endocrinol Lascar N. 6 69 2018 10.1016/S2213-8587(17)30186-9 Lascar N.; Brown J.; Pattison H.; Barnett A.H.; Bailey C.J.; Bellary S.; Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol 2018,6(1),69-80 Expert Rev Pharmacoecon Outcomes Res Ramzan S. 19 5 2019 10.1080/14737167.2018.1513790 Ramzan S.; Timmins P.; Hasan S.S.; Babar Z.U.; Cost analysis of type 2 diabetes mellitus treatment in economically developed coun-tries. Expert Rev Pharmacoecon Outcomes Res 2019,19(1),5-14 Molecules Artasensi A. 25 E1987 2020 10.3390/molecules25081987 Artasensi A.; Pedretti A.; Vistoli G.; Fumagalli L.; Type 2 Diabetes Mellitus: A review of multi-target drugs. Molecules 2020,25(8),E1987 Diabetes Res Clin Pract Nix W.A. 107 157 2015 10.1016/j.diabres.2014.09.058 Nix W.A.; Zirwes R.; Bangert V.; Kaiser R.P.; Schilling M.; Hostalek U.; Obeid R.; Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res Clin Pract 2015,107(1),157-165 Nutrients Chikowore T. 9 E9 2017 10.3390/nu9010009 Chikowore T.; Pisa P.T.; van Zyl T.; Feskens E.J.; Wentzel-Viljoen E.; Conradie K.R.; Nutrient patterns associated with fasting glucose and glycated haemoglobin levels in a black South African population. Nutrients 2017,9(1),E9 Int Ophthalmol Cinici E. 40 3279 2020 10.1007/s10792-020-01513-2 Cinici E.; Dilekmen N.; Senol O.; Arpalı E.; Cinici, O.; Tanas, S. Blood thiamine pyrophosphate concentration and its correlation with the stage of diabetic retinopathy. Int Ophthalmol 2020,40(12),3279-3284 J Diabetes Investig Ziegler D. 12 464 2021 10.1111/jdi.13401 Ziegler D.; Papanas N.; Schnell O.; Nguyen B.D.T.; Nguyen K.T.; Kulkantrakorn K.; Deerochanawong C.; Current concepts in the management of diabetic polyneuropathy. J Diabetes Investig 2021,12(4),464-475 Chem Biol Interact Feng C. 311 108795 2019 10.1016/j.cbi.2019.108795 Feng C.; Li D.; Chen M.; Jiang L.; Liu X.; Li Q.; Geng C.; Sun X.; Yang G.; Zhang L.; Yao X.; Citreoviridin induces myocardial apoptosis through PPAR-γ-mTORC2-mediated autophagic pathway and the protective effect of thiamine and selenium. Chem Biol Interact 2019,311,108795 Proc Natl Acad Sci USA Xu H.E. 98 13919 2001 10.1073/pnas.241410198 Xu H.E.; Lambert M.H.; Montana V.G.; Plunket K.D.; Moore L.B.; Collins J.L.; Oplinger J.A.; Kliewer S.A.; Gampe R.T.; McKee D.D.; Moore J.T.; Willson T.M.; Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated recep-tors. Proc Natl Acad Sci USA 2001,98(24),13919-13924 Int J Mol Sci Gim H.J. 19 E3032 2018 10.3390/ijms19103032 Gim H.J.; Choi Y.S.; Li H.; Kim Y.J.; Ryu J.H.; Jeon R.; Identification of a novel PPAR-γ agonist through a scaffold tuning approach. Int J Mol Sci 2018,19(10),E3032 BMC Biol Durrant J.D. 9 71 2011 10.1186/1741-7007-9-71 Durrant J.D.; McCammon J.A.; Molecular dynamics simulations and drug discovery. BMC Biol 2011,9(1),71 J Biol Chem Narala V.R. 285 22067 2010 10.1074/jbc.M109.085118 Narala V.R.; Adapala R.K.; Suresh M.V.; Brock T.G.; Peters-Golden M.; Reddy R.C.; Leukotriene B4 is a physiologically relevant en-dogenous peroxisome proliferator-activated receptor-alpha agonist. J Biol Chem 2010,285(29),22067-22074 PPAR Res Sullivan H-J. 2020 5314187 2020 10.1155/2020/5314187 Sullivan H-J.; Wang X.; Nogle S.; Liao S.; Wu C.; To probe full and partial activation of human peroxisome proliferator-activated recep-tors by pan-agonist chiglitazar using molecular dynamics simulations. PPAR Res 2020,2020,5314187 Front Immunol Hu S. 2018 9 1778 Hu S.; He W.; Du X.; Huang Y.; Fu Y.; Yang Y.; Hu C.; Li S.; Wang Q.; Wen Q.; Zhou X.; Zhou C.; Zhong X-P.; Ma L.; Vitamin B1 helps to limit Mycobacterium tuberculosis growth via regulating innate immunity in a peroxisome proliferator-activated receptor-γ-dependent manner. Front Immunol 1778,2018,9 J Pharmacol Exp Ther Rival Y. 311 467 2004 10.1124/jpet.104.068254 Rival Y.; Stennevin A.; Puech L.; Rouquette A.; Cathala C.; Lestienne F.; Dupont-Passelaigue E.; Patoiseau J.F.; Wurch T.; Junquéro D.; Human adipocyte fatty acid-binding protein (aP2) gene promoter-driven reporter assay discriminates nonlipogenic peroxisome prolif-erator-activated receptor gamma ligands. J Pharmacol Exp Ther 2004,311(2),467-475
Item Type: | Article |
---|---|
Subjects: | Biotechnology > Bioinformatics |
Divisions: | Biotechnology |
Depositing User: | Mr IR Admin |
Date Deposited: | 10 Sep 2024 06:29 |
Last Modified: | 10 Sep 2024 06:29 |
URI: | https://ir.vistas.ac.in/id/eprint/5398 |