Muraliraja, R. (2022) A Critical Review of Carbon Nanotube-Based Surface Coatings. Progress in Physics of Metals, 23 (1). pp. 3-26. ISSN 16081021
![[thumbnail of 559.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
559.pdf
Download (526kB)
Abstract
The emergence of carbon nanotubes (CNT) has encouraged widespread interest among researchers with many pioneering applications achieved by exploiting the unique properties of carbon allotropes. This article is a general overview of the diversity of applications of CNT and their various forms, particularly, in the area of surface coatings. The different methods, which have been developed and practiced in the preparation, dispersion, functionalization, and metallization of CNT, are elucidated. The composite coatings have been prepared using electrochemical methods such as electroplating and electroless plating. The review presents the mechanical, electrochemical, corrosion, thermal, electrical conduction, tribological, biosensing, magnetic, and microwave absorbing properties of CNT-based composites. The incorporation of CNT substantially affects the coating performance, and the level of influence can be befittingly adjusted to suit the application needs. Various characterization studies have been conducted on these coatings, emphasizing their properties. The potential of CNT as a versatile material in catering to diverse industrial applications has placed the carbon allotrope among the elite group of materials, drawing the attention of researchers to widen their scope of utilization. The challenges, problems, and ways of the overcoming are also addressed in this review.
3 2022 3 2022 3 26 10.15407/ufm.23.01.003 https://ufm.imp.kiev.ua/en/abstract/v23/i01/003.html 10.1533/9780857092960.23 A. Matthews, Surface Engineering Casebook: Solutions to Corrosion and Wear-Related Failures (Woodhead Publishing: 1996); https://doi.org/10.1533/9780857092960.23 P.K. Datta and J.S. Gray, Surface Engineering: Fundamentals of Coatings (Royal Society of Chemistry: 1997). K.N. Strafford, Surface Engineering Practice: Processes, Fundamentals, and Applications in Corrosion and Wear (Ellis Horwood Limited: 1990). 10.1201/9780429466274 J. Sudagar, R. Muraliraja, T.R. Tamilarasan, S. Udayakumar, and A. Selvakumar, Electroless Nickel Plating: Electroless Composite Coatings (CRC Press Publication: 2019); https://doi.org/10.1201/9780429466274 10.1088/0022-3727/25/1A/045 T. Bell, Surface engineering: its current and future impact on tribology, Journal of Physics D: Applied Physics, 25, No. 1A: A297 (1992); https://doi.org/10.1088/0022-3727/25/1A/045 10.1016/j.matlet.2008.03.047 S. Arai, A. Fujimori, M. Murai, and M. Endo, Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films, Materials Letters, 62, No. 20: 3545-3548 (2008). 10.1016/j.tsf.2009.11.079 S.R. Bakshi, D. Lahiri, R.P. Patel, and A. Agarwal, Nanoscratch behavior of carbon nanotube reinforced aluminum coatings, Thin Solid Films, 518, No. 6: 1703-1711 (2010); https://doi.org/10.1016/j.tsf.2009.11.079 10.1016/S0043-1648(01)00844-4 L. Benea, P.L. Bonora, A. Borello, and S. Martelli, Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating, Wear, 249, Nos. 10-11: 995-1003 (2001); https://doi.org/10.1016/S0043-1648(01)00844-4 10.1016/j.surfcoat.2007.10.035 D. Thiemig and A. Bund, Characterization of electrodeposited Ni-TiO2 nanocomposite coatings, Surface and Coatings Technology, 202, No. 13: 2976-2984 (2008); https://doi.org/10.1016/j.surfcoat.2007.10.035 10.1016/j.diamond.2005.09.004 C.-S. Chen, X.-H. Chen, W.-H. Li, L.-S. Xu, and B. Yi, Effect of multi-walled carbon nanotubes as reinforced fibres on tribological behaviour of Ni-P electroless coatings. Diamond and related materials, 15, No. 1: 151-156 (2006); https://doi.org/10.1016/j.diamond.2005.09.004 10.1016/j.matchemphys.2003.11.040 S.-L. Kuo, Y.-C. Chen, M.-D. Ger, and W.-H. Hwu, Nano-particles dispersion effect on Ni/Al2O3 composite coatings, Materials Chemistry and Physics, 86, No. 1: 5-10 (2004); https://doi.org/10.1016/j.matchemphys.2003.11.040 10.1007/s11595-006-3462-y S. Ding, K. Zhang, and C. Wang, Pulse electrodeposition and nanoindentation test of ZrO2/Ni nanocomposite, Journal of Wuhan University of Technology-Mater Sci. Ed., 22, No. 3: 462-465 (2007); https://doi.org/10.1007/s11595-006-3462-y 10.1016/S0965-9773(99)00112-9 A. Möller and H. Hahn H, Synthesis and characterization of nanocrystalline Ni/ZrO2 composite coatings, Nanostructured Materials, 12, Nos. 1-4: 259-62 (1999); https://doi.org/10.1016/S0965-9773%2899%2900112-9 10.1016/j.surfcoat.2004.06.034 M. Stroumbouli, P. Gyftou, E. Pavlatou, and N. Spyrellis, Codeposition of ultrafine WC particles in Ni matrix composite electrocoatings, Surface and Coatings Technology, 195, Nos. 2-3: 325-332 (2005); https://doi.org/10.1016/j.surfcoat.2004.06.034 10.1023/A:1003979117146 P. Nowak, R. Socha, M. Kaisheva, J. Fransaer, J.-P. Celis, and Z. Stoinov, Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel, Journal of Applied Electrochemistry, 30, No. 4: 429-37 (2000); https://doi.org/10.1023/A:1003979117146 10.1016/j.matchemphys.2008.03.007 B.-G. An, L.-X. Li, and H.-X. Li, Electrodeposition in the Ni-plating bath containing multi-walled carbon nanotubes, Materials Chemistry and Physics, 110, Nos. 2-3: 481-485 (2008); https://doi.org/10.1016/j.matchemphys.2008.03.007 10.1179/1743294410Y.0000000001 T. Borkar and S. Harimkar, Microstructure and wear behaviour of pulse electrodeposited Ni-CNT composite coatings, Surface Engineering, 27, No. 7: 524-530 (2011); https://doi.org/10.1179/1743294410Y.0000000001 A. Wurtz, Formation of a cuprous hydride, by the action of hypophosphorus acid on a cupric salt solution, Ann. Chim. Phys., 11: 250-252 (1844.) P. Breteau, Nickel deposited by reduction with hypophosphite, Bull Soc. Chem., 9: 515 (1911). F.A. Roux, Process of producing metallic deposits, Google Patents (1916). A. Brenner and G. Riddell, Electroless plating by a process of controlled self continuing reduction, Proc. Amer. Eletropl. Soc., 33: 16 (1946). 10.6028/jres.039.024 A. Brenner and G.E. Riddell, Deposition of nickel and cobalt by chemical reduction, J. Res. Nat. Bur. Stand., 39, No. 5: 385 (1947). C. Shipley, Historical highlights of electroless plating, Plat. Surf. Finish., 71, No. 6: 92-99 (1984). 10.1016/j.elecom.2005.04.016 F. Wang, S. Arai, and M. Endo, Preparation of nickel-carbon nanofiber composites by a pulse-reverse electrodeposition process. Electrochemistry communications, 7, No. 7: 674-678 (005); https://doi.org/10.1016/j.elecom.2005.04.016 10.1080/02670844.2015.1104102 A. Selvakumar, R. Perumalraj, P.N.R. Jeevananthan, S. Archana, and J. Sudagar, Electroless NiP-MWCNT composite coating for textile industry application, Surface Engineering, 32, No. 5: 338-343 (2016). https://doi.org/10.1080/02670844.2015.1104102 10.1016/S0257-8972(02)00118-4 X.H. Chen, F.Q. Cheng, S.L. Li, L.P. Zhou, and D.Y. Li, Electrodeposited nickel composites containing carbon nanotube, Surface and Coatings Technology, 155, Nos. 2-3: 274-278 (2002); https://doi.org/10.1016/S0257-8972(02)00118-4 10.1016/j.compscitech.2010.10.017 Z. Németh, C. Dieker, Á. Kukovecz, D. Alexander, L. Forró, J.W. Seo, and K. Hernadi, preparation of homogeneous titania coating on the surface of MWNT, Composites Science and Technology, 71, No. 2: 87-94 (2011); https://doi.org/10.1016/j.compscitech.2010.10.017 10.1016/j.surfcoat.2011.04.070 C. Carpenter, P. Shipway, Y. Zhu, and D. Weston, Effective dispersal of CNTs in the fabrication of electrodeposited nanocomposites, Surface and Coatings Technology, 205, No. 20: 4832-4837 (2011); https://doi.org/10.1016/j.surfcoat.2011.04.070 10.1021/jp035063t Q. Xu, L. Zhang, and J. Zhu, Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method, The Journal of Physical Chemistry B, 107, No. 33: 8294-8296 (2003); https://doi.org/10.1021/jp035063t 10.1016/j.carbon.2003.12.084 S. Arai, M. Endo, and N. Kaneko, Ni-deposited multi-walled carbon nanotubes by electrodeposition, Carbon, 42, No. 3: 641-644 (2004); https://doi.org/10.1016/j.carbon.2003.12.084 S.M. Tripathi, T.S. Bholanath, and S. Shantkriti, Synthesis and study of applications of metal coated carbon nanotubes, International Journal of Control and Automation, 3, No. 2: 53-64 (2010). 10.1088/0957-4484/18/50/505704 Y. Sun, J. Sun, M. Liu, and Q. Chen, Mechanical strength of carbon nanotube-nickel nanocomposites, Nanotechnology, 18, No. 50: 505704 (2007). https://doi.org/10.1088/0957-4484/18/50/505704 J.-L. Salager, Surfactants types and uses, FIRP Booklet (2002), p. 300. 10.1016/S0257-8972(02)00118-4 X. Chen, F. Cheng, S. Li, L.P. Zhou, and D.-Y. Li, Electrodeposited nickel composites containing carbon nanotubes, Surface and Coatings Technology, 155, Nos. 2-3: 274-278 (2002); https://doi.org/10.1016/S0257-8972(02)00118-4 10.1016/j.apsusc.2019.145073 R.S. Prasannakumar, V.I. Chukwuike, K. Bhakyaraj, S. Mohan, and R.C. Barik, Electrochemical and hydrodynamic flow characterization of corrosion protection persistence of nickel/multiwalled carbon nanotubes composite coating, Applied Surface Science, 507: 145073 (2019); https://doi.org/10.1016/j.apsusc.2019.145073 10.1016/j.matdes.2010.11.013 P. Sahoo and S.K. Das, Tribology of electroless nickel coatings - A review, Materials & Design, 32: 1760-1775 (2011); https://doi.org/10.1016/j.matdes.2010.11.013 10.1023/A:1025572410205 J. Balaraju, T. Sankara Narayanan, and S. Seshadri, Electroless Ni-P composite coatings, Journal of Applied Electrochemistry, 33: 807-816 (2003); https://doi.org/10.1023/A:1025572410205 10.1016/j.jallcom.2013.03.107 Jothi Sudagar, Jianshe Lian, and Wei Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, Journal of Alloys and Compounds, 571: 183-204 (2013); https://doi.org/10.1016/j.jallcom.2013.03.107 10.1016/j.tsf.2004.02.016 Z. Yang, H. Xu, M.-K. Li, Y.-L. Shi, Y. Huang, and H.-L. Li, Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating, Thin Solid Films, 466, Nos. 1-2: 86-91 (2004); https://doi.org/10.1016/j.tsf.2004.02.016 10.1016/j.materresbull.2005.02.015 Z. Yang, Y. Xu, Y.-L. Shi, M.-K. Li, Y. Huang, and H.-L. Li, The fabrication and corrosion behavior of electroless Ni-P-carbon nanotube composite coatings, Materials Research Bulletin, 40, No. 6: 1001-1009 (2005); https://doi.org/10.1016/j.materresbull.2005.02.015 10.1016/j.materresbull.2008.02.019 Yucheng Wu, R. Rong, W. Fengtao, Y. Zaoshi, W. Tugen, and H. Xiaoye, Preparation and characterization of Ni-Cu-P/CNTs quaternary electroless composite coating, Materials Research Bulletin, 43, No. 12: 3425-3432 (2008); https://doi.org/10.1016/j.materresbull.2008.02.019 10.1016/j.surfcoat.2010.11.030 S. Arai, T. Sato, M. Endo, Fabrication of various electroless Ni-P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin, Surface and Coatings Technology, 205, No. 10: 3175-3181 (2011); https://doi.org/10.1016/j.surfcoat.2010.11.030 10.1016/j.matchar.2013.09.006 A. Maqbool, M.A. Hussain, F.A. Khalid, N. Bakhsh, A. Hussain, and M.H. Kim, Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites, Materials Characterization, 86: 39-48 (2013); https://doi.org/10.1016/j.matchar.2013.09.006 10.1016/j.ceramint.2014.01.150 C. Ma, F. Wu, Y. Ning, F. Xia, and Y. Liu, Effect of heat treatment on structures and corrosion characteristics of electroless Ni-P-SiC nanocomposite coatings, Ceramics International, 40, No. 7: 9279-9284 (2014); https://doi.org/10.1016/j.ceramint.2014.01.150 10.1016/S0043-1648(03)00171-6 L.Y. Wang, J. Tu, W. Chen, Y. Wang, X. Liu, C. Olk, D.H. Cheng, and X.B. Zhang, Friction and wear behavior of electroless Ni-based CNT composite coatings, Wear, 254, No. 12: 1289-1293 (2003); https://doi.org/10.1016/S0043-1648(03)00171-6 10.1016/S0008-6223(02)00265-8 W. Chen, J. Tu, L. Wang, H. Gan, Z. Xu, and X. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon, 41, No. 2: 215-222 (2003); https://doi.org/10.1016/S0008-6223(02)00265-8 10.1016/j.triboint.2004.11.008 X.H. Chen, C.S. Chen, H.N. Xiao, H.N. Liu, L.P Zhou, S.L. Li, and G. Zhang, Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits, Tribology International, 39, No. 1: 22-28 (2006); https://doi.org/10.1016/j.triboint.2004.11.008 10.1016/j.triboint.2005.10.001 Z. Li, X. Wang, M. Wang, F. Wang, and H. Ge, Preparation and tribological properties of the carbon nanotubes-Ni-P composite coating, Tribology International, 39, No. 9: 953-075 (2006); https://doi.org/10.1016/j.triboint.2005.10.001 10.1016/j.apsusc.2011.10.067 M. Alishahi, S.M. Monirvaghefi, A. Saatchi, and S.M. Hosseini, The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni-P-CNT composite coating, Applied Surface Science, 258, No. 7: 2439-2446 (2012); https://doi.org/10.1016/j.apsusc.2011.10.067 10.1016/j.tsf.2013.02.005 H.-D. Lee, O.V. Penkov, and D.-E. Kim, Tribological behavior of dual-layer electroless-plated Ag-carbon nanotube coatings, Thin Solid Films, 534: 410-416 (2013); https://doi.org/10.1016/j.tsf.2013.02.005 10.1149/1.3489535 S. Arai, M. Kobayashi, T. Yamamoto, and M. Endo, Pure-nickel-coated multiwalled carbon nanotubes prepared by electroless deposition, Electrochemical and Solid State Letters, 13, No. 12: D94 (2010); https://doi.org/10.1149/1.3489535 10.1016/j.compositesa.2011.01.020 K.-Y. Park, J.-H. Han, S.-B. Lee, and J.-W. Yi, Microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating, Composites Part A: Applied Science and Manufacturing, 42, No. 5: 573-578 (2011); https://doi.org/10.1016/j.compositesa.2011.01.020 10.3390/electrochem2040036 S. Arai, Fabrication of metal/carbon nanotube composites by electrochemical deposition, Electrochem, 2: 563-589 (2021); https://doi.org/10.3390/electrochem2040036 10.1016/j.mtla.2020.100617 K.S. Jyotheender, A. Gupta, and C. Srivastava, Grain boundary engineering in Ni-carbon nanotube composite coatings and its effect on the corrosion behavior of the coatings, Materialia, 9: 100617 (2020); https://doi.org/10.1016/j.mtla.2020.100617 10.3390/coatings9100596 Y. Wang and J. Chen, Preparation and characterization of polydopamine-modified Ni/carbon nanotubes friction composite coating, Coatings, 9: 596 (2019); https://doi.org/10.3390/coatings9100596 10.1016/j.jallcom.2019.06.083 S. Arora, N. Kumari, and C. Srivastava, Microstructure and corrosion behavior of NiCo-carbon nanotube composite coatings, Journal of Alloys and Compounds, 801: 449-459 (2019); https://doi.org/10.1016/j.jallcom.2019.06.083 10.1016/j.surfcoat.2020.126596 A. Aliyu and C. Srivastava, Corrosion between growth texture, crystallite size, lattice strain and corrosion behavior of copper-carbon nanotube composite coatings, Surface Coating and Technology, 405: 126596 (2021). https://doi.org/10.1016/j.surfcoat.2020.126596 10.1007/s10854-020-03974-8 D. Li, J. Xue, T. Zuo, Z. Gao, L. Xiao, L. Han, S. Li, and Y. Yang, Copper/functionalized-carbon nanotubes composite films with ultrahigh electrical conductivity prepared by pulse reverse electrodeposition, Journal of Materials Science Mater. Electron., 31: 14184-14191 (2020); https://doi.org/10.1007/s10854-020-03974-8 10.1016/j.matlet.2019.126993 M. Shimizu, T. Ogasawara, T. Ohnuki, and S. Arai, Multi-layered copper foil reinforced by co-deposition of single-walled carbon nanotube based on electroplating technique, Materials Letters, 261: 126993 (2020); https://doi.org/10.1016/j.matlet.2019.126993 10.3390/ma12030392 D. Ning, A. Zhang, and H. Wu, Enhanced wear performance of Cu-carbon nanotubes composite coatings prepared by jet electrodeposition, Materials, 12: 392 (2019); https://doi.org/10.3390/ma12030392 10.1039/C9RA03000J M. Shimizu, T. Ohnuki, T. Ogasawara, T. Banno, and S. Arai, Electrodeposited Cu/MWCNT composite film: A potential current collector of silicon-based negative-electrodes for Li-ion batteries, RSC Advances, 38: 21939-21945 (2019); https://doi.org/10.1039/C9RA03000J 10.1007/s11661-020-06070-y K.S. Jyotheender and C. Srivastava, Correlating the five-parameter grain boundary character distribution and corrosion behavior of zinc-carbon nanotube composite coatings, Metallurgical Materials Transactions A, 52: 364-377 (2021); https://doi.org/10.1007/s11661-020-06070-y 10.1016/j.surfcoat.2020.125381 P. Tripathi, P.K. Katiyar, J. Ramkumar, K. Balani, Synergistic role of carbon nanotube and yttria stabilized zirconia reinforcement on wear and corrosion resistance of Cr-based nanocomposite coatings, Surface Coatings and Technology, 385: 125381 (2020); https://doi.org/10.1016/j.surfcoat.2020.125381 10.1016/j.jmrt.2021.08.031 A.T.S.C. Brandao, S. Rosoiu, R. Costa, O.A. Lazar, A.F. Silva, L. Anicai, C.M. Pereira, and M. Enachescu, Characterization and electrochemical studies of MWCNTs decorated with Ag nanoparticles through pulse reversed current electrodeposition using a deep eutectic solvent for energy storage applications, Journal of Materials Research Technology, 15: 342-359 (2021); https://doi.org/10.1016/j.jmrt.2021.08.031 10.1016/j.jallcom.2019.152585 Z. Zhang, A. Kitada, T. Chen, K. Fukami, M. Shimizu, S. Arai, Z. Yao, and K. Murase, Dispersion of multiwalled carbon nanotubes into a diglyme solution, electrodeposition of aluminum-based composite, and improvement of hardness, Journal of Alloys and Compounds, 816: 152585 (2020); https://doi.org/10.1016/j.jallcom.2019.152585 10.3390/met11060982 M.C. Lopes de Oliveira, O.V. Correa, R.M. Pereira da Silva, N. Batista de Lima, J.T. Dias de Oliveira, L. Antonio de Oliveira, and R.A. Antunes, Structural characterization, global and local electrochemical activity of electroless Ni-P-multiwalled carbon nanotube composite coatings on pipeline steel, Metals, 11, No. 6: 982 (2021); https://doi.org/10.3390/met11060982 10.1088/2053-1591/abcc3f E. Ergul, H.I. Kurt, M. Oduncuohlu, and N.F. Yilmas, Electroless nickel-phosphorous and cobalt-phosphorous coatings on multiwalled carbon nanotubes, Materials Research Express, 7: 115604 (2020); https://doi.org/10.1088/2053-1591/abcc3f 10.1002/aoc.5434 Q. Qi, Y. Wang, X. Ding, W. Wang, R. Xu, and D. Yu, High-electromagnetic-shielding cotton fabric prepared using multiwalled carbon nanotubes/nickel-phosphorous electroless plating, Applied Orgnometallic Chemistry, 34, No. 3: e5434 (2020); https://doi.org/10.1002/aoc.5434 10.1016/B978-0-08-102053-1.00004-1 Ali Ghavamian, Maksym Rybachuk, and Andreas Öchsner, Defects in carbon nanotubes, Defects in Advanced Electronic Materials and Novel Low Dimensional Structures (Woodhead Publishing: 2018), pp. 87-136; https://doi.org/10.1016/B978-0-08-102053-1.00004-1 10.15407/ufm.21.02.153 E.A. Tsapko and I.Ye. Galstian, Positron spectroscopy study of structural defects and electronic properties of carbon nanotubes, Prog. Phys. Met., 21, No. 2: 153-179 (2020); https://doi.org/10.15407/ufm.21.02.153 10.1002/9781119468455.ch14 T.M. Radchenko, I.Y. Sahalianov, V.A. Tatarenko, Y.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene, Volume 1: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A.N. Chaika) (Beverly, MA: John Wiley & Sons, Inc., Scrivener Publishing LLC: 2019), Ch. 14, pp. 451-502; https://doi.org/10.1002/9781119468455.ch14 10.1007/978-3-319-91083-3_3 T.M. Radchenko, I.Yu. Sagalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics, Volume 210: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Springer: 2018), Ch. 3, pp. 25-41; https://doi.org/10.1007/978-3-319-91083-3_3 T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. Bruce T. Edwards) (New York: Nova Science Publishers, Inc.: 2014), Ch. 7, pp. 219-259; https://novapublishers.com/shop/graphene-mechanical-properties-potential-applications-and-electrochemical-performance 10.1016/j.matpr.2019.10.014 T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Part 4: 523-529 (2021); https://doi.org/10.1016/j.matpr.2019.10.014 10.1002/pssb.201800406 T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406 10.1016/j.aop.2018.09.004 I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Ann. Phys., 398: 80-93 (2018); https://doi.org/10.1016/j.aop.2018.09.004
Item Type: | Article |
---|---|
Subjects: | Mechanical Engineering > Strength of Materials |
Divisions: | Mechanical Engineering |
Depositing User: | Mr IR Admin |
Date Deposited: | 10 Sep 2024 06:30 |
Last Modified: | 10 Sep 2024 06:30 |
URI: | https://ir.vistas.ac.in/id/eprint/5392 |