Vanaparthi Kiranmai, . and Manikandan, A (2025) A Study on AI-Powered Threat Intelligence Systems for Proactive Cyber Defence. Global Journal of Engineering Innovations & Interdisciplinary Research, 5 (5).
4emU18UBtkKc7WelB8lAqmkcVC018s2v00ah45m4.pdf
Download (509kB)
Abstract
This study evaluates the comparative performance of traditional versus AI-powered threat intelligence
systems in the content of proactive cyber defence. Traditional threat intelligence systems, characterized
by manual processes and reliance on signature-based detection, exhibit limitations in terms of detection
rate, response time, and overall accuracy. In contrast, AI-powered systems leverage advanced technologies such as machine learning and deep learning to significantly enhance threat detection and response capabilities. Our experimental results reveal that AI-powered systems achieve a higher
detection rate (92.3%) compared to traditional systems (78.5%), coupled with a lower false positive rate (8.7% versus 15.2%) and faster average response time (15.2 seconds versus 45.0 seconds). The AI systems also demonstrate superior accuracy (94.5%) and are capable of detecting a greater volume of threats (320 per day) while automating a higher percentage of responses (75.0%). These findings underscore the advantages of integrating AI into threat intelligence systems to improve the efficiency
and effectiveness of cybersecurity measures
| Item Type: | Article |
|---|---|
| Subjects: | Computer Science Engineering > Artificial Intelligence |
| Domains: | Computer Science Engineering |
| Depositing User: | Mr Sureshkumar A |
| Date Deposited: | 26 Dec 2025 09:01 |
| Last Modified: | 26 Dec 2025 09:01 |
| URI: | https://ir.vistas.ac.in/id/eprint/11900 |


