Water Soluble Self-Aggregates Induced Green Emission of Biocompatible Citric Acid-PEG Hyper Branched Polymer

Mani, Gajendiran and Kyobum, Kim and Sengottuvelan, Balasubramanian (2017) Water Soluble Self-Aggregates Induced Green Emission of Biocompatible Citric Acid-PEG Hyper Branched Polymer. Scientific Reports, 7 (1). ISSN 2045-2322

[thumbnail of s41598-017-16683-w.pdf] Text
s41598-017-16683-w.pdf

Download (2MB)

Abstract

Water Soluble Self-Aggregates Induced Green Emission of Biocompatible Citric Acid-PEG Hyper Branched Polymer Gajendiran Mani Kim Kyobum Balasubramanian Sengottuvelan Abstract

An aliphatic citric acid–PEG hyper-branched polymer (CPHP) with a π-bond on the polymer backbone was synthesized by a single- step melt reaction in which the polymerization and π-bond formation occur simultaneously. The chemical structure of CPHP was confirmed by FTIR, 1 H-NMR, 13 C-NMR and MALDI-TOF mass spectral analyses. Aggregates are generally found to disperse in any solvent but the CPHP aggregates were soluble in water due to their hybrid nature. The π-bond in the aconitate unit induces green emission by CH/π interaction while the PEG unit of CPHP increases its solubility in water. The soluble aggregates induced green emission (SAIE) of the CPHP was investigated by UV-Visible absorption and emission spectra, time- correlated single photon counting (TCSPC) and zeta potential measurements. The fluorescence life time (τ f ) increased from 4.93 to11.38 ns with an increase in CPHP concentration. The fluorescence quantum yield (Φ f ) of CPHP can be altered by varying the concentration of CPHP.
11 27 2017 16418 16683 1 10.1007/springer_crossmark_policy link.springer.com false 23 August 2017 16 November 2017 27 November 2017 The authors declare that they have no competing interests. https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 10.1038/s41598-017-16683-w 20221223145637830 https://www.nature.com/articles/s41598-017-16683-w https://www.nature.com/articles/s41598-017-16683-w.pdf https://www.nature.com/articles/s41598-017-16683-w.pdf https://www.nature.com/articles/s41598-017-16683-w Chem. Rev. S-C Lo 107 1097 2007 10.1021/cr050136l Lo, S.-C. & Burn, P. L. Development of Dendrimers: Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells. Chem. Rev. 107, 1097–1116, https://doi.org/10.1021/cr050136l (2007). Chem. Commun. B Shin 47 1734 2011 10.1039/C0CC03851B Shin, B., Won, J., Son, T., Kang, Y. S. & Kim, C. K. Barrier effect of dendrons on TiO2 particles in dye sensitized solar cells. Chem. Commun. 47, 1734–1736, https://doi.org/10.1039/C0CC03851B (2011). J. Colloid Interf. Sci. A Mashhadi Malekzadeh 490 64 2017 10.1016/j.jcis.2016.11.014 Mashhadi Malekzadeh, A., Ramazani, A., Tabatabaei Rezaei, S. J. & Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interf. Sci. 490, 64–73, https://doi.org/10.1016/j.jcis.2016.11.014 (2017). Polym. Chem. C Grazon 7 4272 2016 10.1039/C6PY00646A Grazon, C., Rieger, J., Beaunier, P., Meallet-Renault, R. & Clavier, G. Fluorescent core-shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: synthesis and functionalization thereof. Polym. Chem. 7, 4272–4283, https://doi.org/10.1039/C6PY00646A (2016). J. Am. Chem. Soc. MC Parrott 131 2906 2009 10.1021/ja8078175 Parrott, M. C. et al. Synthesis, Radiolabeling, and Bio-imaging of High-Generation Polyester Dendrimers. J. Am. Chem. Soc. 131, 2906–2916, https://doi.org/10.1021/ja8078175 (2009). Chem. Eng. J. Y Zhou 304 527 2016 10.1016/j.cej.2016.06.115 Zhou, Y., Zhang, Z., Zhang, J. & Xia, S. Understanding key constituents and feature of the biopolymer in activated sludge responsible for binding heavy metals. Chem. Eng. J. 304, 527–532, https://doi.org/10.1016/j.cej.2016.06.115 (2016). Macromolecules X Ma 46 37 2013 10.1021/ma301849a Ma, X. et al. Facile Synthesis of Polyester Dendrimers as Drug Delivery Carriers. Macromolecules 46, 37–42, https://doi.org/10.1021/ma301849a (2013). Colloids Surf. B H Liu 94 58 2012 10.1016/j.colsurfb.2012.01.019 Liu, H. et al. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold–silver alloy nanoparticles. Colloids Surf. B 94, 58–67, https://doi.org/10.1016/j.colsurfb.2012.01.019 (2012). Langmuir M Stemmler 25 12425 2009 10.1021/la902354e Stemmler, M. et al. One-Pot Preparation of Dendrimer−Gold Nanoparticle Hybrids in a Dipolar Aprotic Solvent. Langmuir 25, 12425–12428, https://doi.org/10.1021/la902354e (2009). J. Mater. Chem. B M Gajendiran 2 418 2014 10.1039/C3TB21113D Gajendiran, M., Jainuddin Yousuf, S. M., Elangovan, V. & Balasubramanian, S. Gold nanoparticle conjugated PLGA-PEG-SA-PEG-PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. J. Mater. Chem. B 2, 418–427, https://doi.org/10.1039/C3TB21113D (2014). Eur. Polym. J. H Namazi 39 1491 2003 10.1016/S0014-3057(02)00385-3 Namazi, H. & Adeli, M. Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block. Eur. Polym. J. 39, 1491–1500, https://doi.org/10.1016/S0014-3057(02)00385-3 (2003). Biomateria H Namazi l26 1175 2005 10.1016/j.biomaterials.2004.04.014 Namazi, H. & Adeli, M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials 26, 1175–1183, https://doi.org/10.1016/j.biomaterials.2004.04.014 (2005). Nanomedicine AT Naeini 6 556 2010 10.1016/j.nano.2009.11.008 Naeini, A. T., Adeli, M. & Vossoughi, M. Poly(citric acid)-block-poly(ethylene glycol) copolymers—new biocompatible hybrid materials for nanomedicine. Nanomedicine 6, 556–562, https://doi.org/10.1016/j.nano.2009.11.008 (2010). Eur. Polym. J. A Tavakoli Naeini 46 165 2010 10.1016/j.eurpolymj.2009.10.017 Tavakoli Naeini, A., Adeli, M. & Vossoughi, M. Synthesis of gold nanoparticle necklaces using linear–dendritic copolymers. Eur. Polym. J. 46, 165–170, https://doi.org/10.1016/j.eurpolymj.2009.10.017 (2010). Chem. Phys. A Penzkofer 103 399 1986 10.1016/0301-0104(86)80041-6 Penzkofer, A. & Lu, Y. Fluorescence quenching of rhodamine 6G in methanol at high concentration. Chem. Phys. 103, 399–405, https://doi.org/10.1016/0301-0104(86)80041-6 (1986). J. Am. Chem. Soc. C Munkholm 112 2608 1990 10.1021/ja00163a021 Munkholm, C., Parkinson, D. R. & Walt, D. R. Intramolecular fluorescence self-quenching of fluoresceinamine. J. Am. Chem. Soc. 112, 2608–2612, https://doi.org/10.1021/ja00163a021 (1990). Chem. Commun. Z Zhao 46 686 2010 10.1039/B915271G Zhao, Z. et al. Aggregation-induced emission, self-assembly, and electroluminescence of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl. Chem. Commun. 46, 686–688, https://doi.org/10.1039/B915271G (2010). 10.1039/B105159H Luo, J. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 1740–1741, https://doi.org/10.1039/B105159H (2001). J. Am. Chem. Soc. J Wang 134 9956 2012 10.1021/ja208883h Wang, J. et al. Click Synthesis, Aggregation-Induced Emission, E/Z Isomerization, Self-Organization, and Multiple Chromisms of Pure Stereoisomers of a Tetraphenylethene-Cored Luminogen. J. Am. Chem. Soc. 134, 9956–9966, https://doi.org/10.1021/ja208883h (2012). Org. Lett. S Kumar 15 3400 2013 10.1021/ol401452t Kumar, S., Singh, P., Mahajan, A. & Kumar, S. Aggregation Induced Emission Enhancement in Ionic Self-Assembled Aggregates of Benzimidazolium Based Cyclophane and Sodium Dodecylbenzenesulfonate. Org. Lett. 15, 3400–3403, https://doi.org/10.1021/ol401452t (2013). J. Food Sci. KN Ryan 78 R1105 2013 10.1111/1750-3841.12207 Ryan, K. N., Zhong, Q. & Foegeding, E. A. Use of Whey Protein Soluble Aggregates for Thermal Stability—A Hypothesis Paper. J. Food Sci. 78, R1105–R1115, https://doi.org/10.1111/1750-3841.12207 (2013). Langmuir C Schmitt 23 4155 2007 10.1021/la0632575 Schmitt, C., Bovay, C., Rouvet, M., Shojaei-Rami, S. & Kolodziejczyk, E. Whey Protein Soluble Aggregates from Heating with NaCl: Physicochemical, Interfacial, and Foaming Properties. Langmuir 23, 4155–4166, https://doi.org/10.1021/la0632575 (2007). Sci. Rep. Y Liu 7 2017 10.1038/s41598-017-07465-5 Liu, Y., Nie, J., Niu, J., Meng, F. & Lin, W. Ratiometric fluorescent probe with AIE property for monitoring endogenous hydrogen peroxide in macrophages and cancer cells. Sci. Rep. 7, 7293, https://doi.org/10.1038/s41598-017-07465-5 (2017). J. Appl. Polym. Sci. M Worzakowska 114 720 2009 10.1002/app.30594 Worzakowska, M. Chemical modification of unsaturated polyesters influence of polyester’s structure on thermal and viscoelastic properties of low styrene content copolymers. J. Appl. Polym. Sci. 114, 720–731, https://doi.org/10.1002/app.30594 (2009). J. Appl. Polym. Sci. F Barroso-Bujans 88 302 2003 10.1002/app.11664 Barroso-Bujans, F., Martínez, R. & Ortiz, P. Structural characterization of oligomers from the polycondensation of citric acid with ethylene glycol and long-chain aliphatic alcohols. J. Appl. Polym. Sci. 88, 302–306, https://doi.org/10.1002/app.11664 (2003). J. Appl.Polym. Sci. A Spyros 88 1881 2003 10.1002/app.11950 Spyros, A. Characterization of unsaturated polyester and alkyd resins using one- and two-dimensional NMR spectroscopy. J. Appl.Polym. Sci. 88, 1881–1888, https://doi.org/10.1002/app.11950 (2003). Polym. J. S Takenouchi 33 746 2001 10.1295/polymj.33.746 Takenouchi, S., Takasu, A., Inai, Y. & Hirabayashi, T. Effects of Geometric Structure in Unsaturated Aliphatic Polyesters on Their Biodegradability. Polym. J. 33, 746–753, https://doi.org/10.1295/polymj.33.746 (2001). Macromolecules Y Iwaya 15 396 1982 10.1021/ma00230a038 Iwaya, Y. & Tazuke, S. Inter- and intramolecular interactions of polymers as studied by fluorescence spectroscopy. 9. Synthesis of a polymethacrylate having 2-[(1-pyrenyl)methyl]-2-[4-(dimethylamino)benzyl]ethyl side chains and its exciplex emission behavior. Macromolecules 15, 396–400, https://doi.org/10.1021/ma00230a038 (1982). Photochem. Photobiol. Sci. E Rousseau 1 395 2002 10.1039/b201690g Rousseau, E., Koetse, M. M., Van der Auweraer, M. & De Schryver, F. C. Comparison between J-aggregates in a self-assembled multilayer and polymer-bound J-aggregates in solution: a steady-state and time-resolved spectroscopic study. Photochem. Photobiol. Sci. 1, 395–406, https://doi.org/10.1039/B201690G (2002). RSC Adv. M Boominathan 3 22246 2013 10.1039/c3ra42809e Boominathan, M. et al. Aggregation induced emission characteristics of maleimide derivatives. RSC Adv. 3, 22246–22252, https://doi.org/10.1039/C3RA42809E (2013). J. Phys. Chem. C R Wei 117 3467 2013 10.1021/jp311020w Wei, R., Song, P. & Tong, A. Reversible Thermochromism of Aggregation-Induced Emission-Active Benzophenone Azine Based on Polymorph-Dependent Excited-State Intramolecular Proton Transfer Fluorescence. J. Phys. Chem. C 117, 3467–3474, https://doi.org/10.1021/jp311020w (2013). J. Phys. Chem. B Y Qian 111 5861 2007 10.1021/jp070076i Qian, Y. et al. Aggregation-Induced Emission Enhancement of 2-(2′-Hydroxyphenyl)benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds. J. Phys. Chem. B 111, 5861–5868, https://doi.org/10.1021/jp070076i (2007). Langmuir S Alila 23 3723 2007 10.1021/la063118n Alila, S., Aloulou, F., Beneventi, D. & Boufi, S. Self-Aggregation of Cationic Surfactants onto Oxidized Cellulose Fibers and Coadsorption of Organic Compounds. Langmuir 23, 3723–3731, https://doi.org/10.1021/la063118n (2007). J. Am. Chem. Soc. F Wang 127 10350 2005 10.1021/ja0521730 Wang, F., Han, M.-Y., Mya, K. Y., Wang, Y. & Lai, Y.-H. Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers. J. Am. Chem. Soc. 127, 10350–10355, https://doi.org/10.1021/ja0521730 (2005). Langmuir S Fery-Forgues 29 14718 2013 10.1021/la403909k Fery-Forgues, S., Veesler, S., Fellows, W. B., Tolbert, L. M. & Solntsev, K. M. Microcrystals with Enhanced Emission Prepared from Hydrophobic Analogues of the Green Fluorescent Protein Chromophore via Reprecipitation. Langmuir 29, 14718–14727, https://doi.org/10.1021/la403909k (2013). RSC Adv. M-k Leung 3 22219 2013 10.1039/c3ra42469c Leung, M.-k et al. Benzenetricarboxamide-cored triphenylamine dendrimer: nanoparticle film formation by an electrochemical method. RSC Adv. 3, 22219–22228, https://doi.org/10.1039/C3RA42469C (2013). Chem. Rev. J Mei 115 11718 2015 10.1021/acs.chemrev.5b00263 Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 115, 11718–11940, https://doi.org/10.1021/acs.chemrev.5b00263 (2015). Chem. Sci. L Viglianti 8 2629 2017 10.1039/C6SC05192H Viglianti, L. et al. Aggregation-induced emission: mechanistic study of the clusteroluminescence of tetrathienylethene. Chem. Sci. 8, 2629–2639, https://doi.org/10.1039/C6SC05192H (2017). Polym. Chem. R Ye 8 1722 2017 10.1039/C7PY00154A Ye, R. et al. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem. 8, 1722–1727, https://doi.org/10.1039/C7PY00154A (2017). ACS Appl. Mater. Interf. J Qin 7 14043 2015 10.1021/acsami.5b03222 Qin, J. et al. Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T2 MRI and Drug Delivery. ACS Appl. Mater. Interf. 7, 14043–14052, https://doi.org/10.1021/acsami.5b03222 (2015). Biomacromolecules C Yang 17 1673 2016 10.1021/acs.biomac.6b00092 Yang, C. et al. Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging. Biomacromolecules 17, 1673–1683, https://doi.org/10.1021/acs.biomac.6b00092 (2016). Eur. J. Pharm. Sci. S Pistone 96 381 2017 10.1016/j.ejps.2016.10.012 Pistone, S., Goycoolea, F. M., Young, A., Smistad, G. & Hiorth, M. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur. J. Pharm. Sci. 96, 381–389, https://doi.org/10.1016/j.ejps.2016.10.012 (2017).

Item Type: Article
Subjects: Allied Health Sciences > Health Care Sciences and Services
Domains: Allied Health Sciences
Depositing User: Mr IR Admin
Date Deposited: 28 Aug 2025 09:04
Last Modified: 28 Aug 2025 09:04
URI: https://ir.vistas.ac.in/id/eprint/11096

Actions (login required)

View Item
View Item