Anbukaruppuchamy, S. and Balamurugan, P. and Vijayamathubalan, P. and Dayanithi, Janet and Vidya, J. (2025) Enhanced Electrochemical Performance of Cobalt-Substituted Zinc Ferrite for High-Stability Supercapacitors. Asian Journal of Chemistry, 37 (7). pp. 1690-1696. ISSN 0970-7077
![[thumbnail of 018-33918+(1690-1696)+2025.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
018-33918+(1690-1696)+2025.pdf
Download (2MB)
Abstract
Enhanced Electrochemical Performance of Cobalt-Substituted Zinc Ferrite for High-Stability Supercapacitors S. Anbukaruppuchamy https://orcid.org/0009-0002-4356-0860 P. Balamurugan https://orcid.org/0000-0002-5129-6898 P. Vijayamathubalan https://orcid.org/0009-0000-7351-1811 Janet Dayanithi https://orcid.org/0009-0003-0385-2209 J. Vidya https://orcid.org/0000-0001-6000-401X
Cobalt-substituted zinc ferrite (CoxZn1-xFe2O4) nanoparticles were synthesized and studied for their structural, morphological and electrochemical properties. The XRD results confirmed that the prepared samples possess cubic spinel structure with crystallite size decreased from 31.45 nm to 26.13 nm upon cobalt substitution. FTIR and Raman spectroscopic studies validated spinel phase formation with metal-oxygen vibrations in tetrahedral and octahedral sites. The FESEM study showed agglomerated morphology and the EDX result confirmed stoichiometry. Electrochemical tests (CV, GCD, EIS, cyclic stability test) revealed improved charge storage and conductivity caused by cobalt content. Co0.5Zn0.5Fe2O4 achieved 306.2 F/g at 1 A/g and 96% capacitance retention after 4000 cycles at 10 A/g, indicating its potential as a high-performance supercapacitor electrode.
06 30 2025 1690 1696 https://creativecommons.org/licenses/by/4.0 10.14233/ajchem.2025.33918 https://asianpubs.org/index.php/ajchem/article/view/37_7_18 https://asianpubs.org/index.php/ajchem/article/download/37_7_18/30126 https://asianpubs.org/index.php/ajchem/article/download/37_7_18/30126 10.1002/er.4285 O. Krishan and S. Suhag, Int. J. Energy Res., 43, 6171 (2019); https://doi.org/10.1002/er.4285 10.1016/j.est.2022.104194 R.T. Yadlapalli, R.R. Alla, R. Kandipati and A. Kotapati, J. Energy Storage, 49, 104194 (2022); https://doi.org/10.1016/j.est.2022.104194 10.1039/C7CS00505A D.P. Dubal, N.R. Chodankar, D.H. Kim and P. Gomez-Romero, Chem. Soc. Rev., 47, 2065 (2018); https://doi.org/10.1039/C7CS00505A 10.1007/s00170-019-03864-2 M. Mortazavi and A. Ivanov, Int. J. Adv. Manuf. Technol., 105, 4621 (2019); https://doi.org/10.1007/s00170-019-03864-2 10.1016/j.cej.2019.122982 P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won and S. Chan Jun, Chem. Eng. J., 387, 122982 (2020); https://doi.org/10.1016/j.cej.2019.122982 10.1016/j.mseb.2024.117544 P. Gaikwad, N. Tiwari, R. Kamat, S.M. Mane and S.B. Kulkarni, Mater. Sci. Eng. B, 307, 117544 (2024); https://doi.org/10.1016/j.mseb.2024.117544 10.1016/j.matlet.2017.04.032 Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang and H. Fan, Mater. Lett., 198, 192 (2017); https://doi.org/10.1016/j.matlet.2017.04.032 10.1007/s10853-017-1735-9 X. Feng, Y. Huang, X. Chen, C. Wei, X. Zhang and M. Chen, J. Mater. Sci., 53, 2648 (2018); https://doi.org/10.1007/s10853-017-1735-9 10.1088/2053-1591/ab3339 M. Saraf, K. Natarajan, A.K. Gupta, P. Kumar, R. Rajak and S.M. Mobin, Mater. Res. Express, 6, 095534 (2019); https://doi.org/10.1088/2053-1591/ab3339 10.1016/j.mseb.2017.11.013 Y. Lin, J. Wang, H. Yang, L. Wang and M. Cao, Mater. Sci. Eng. B, 228, 103 (2018); https://doi.org/10.1016/j.mseb.2017.11.013 10.1039/D1RA04833C N.M. Malima, M.D. Khan, J. Choi, R.K. Gupta, P. Mashazi, T. Nyokong and N. Revaprasadu, RSC Adv., 11, 31002 (2021); https://doi.org/10.1039/D1RA04833C 10.1007/s00339-018-1936-3 B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi and A. Sakunthala, Appl. Phys., A Mater. Sci. Process., 124, 511 (2018); https://doi.org/10.1007/s00339-018-1936-3 10.1007/s11706-012-0167-3 A. Sutka and G. Mezinskis, Front. Mater. Sci., 6, 128 (2012); https://doi.org/10.1007/s11706-012-0167-3 10.1557/jmr.2020.200 M. Khairy, W.A. Bayoumy, S.S. Selima and M.A. Mousa, J. Mater. Res., 35, 2652 (2020); https://doi.org/10.1557/jmr.2020.200 10.1016/j.jaap.2011.10.004 N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 94, 41 (2012); https://doi.org/10.1016/j.jaap.2011.10.004 10.14233/ajchem.2024.32404 K.J. Oviya and P. Sivagurunathan, Asian J. Chem., 36, 2375 (2024); https://doi.org/10.14233/ajchem.2024.32404 10.1007/s10854-022-09392-2 S. Demirel, R. Topkaya and K. Cicek, J. Mater. Sci. Mater. Electron., 34, 1 (2023); https://doi.org/10.1007/s10854-022-09392-2 10.1038/nmat3601 V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon and B. Dunn, Nature Mater., 12, 518 (2013); https://doi.org/10.1038/nmat3601 10.1007/s11581-022-04846-3 S. Suresh and V. Sindhu, Ionics, 29, 843 (2023); https://doi.org/10.1007/s11581-022-04846-3 10.1021/jp074464w J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 111, 14925 (2007); https://doi.org/10.1021/jp074464w 10.1016/j.rinp.2016.04.010 B. Bhujun, M.T. Tan and A.S. Shanmugam, Results Phys., 7, 345 (2017); https://doi.org/10.1016/j.rinp.2016.04.010 10.1038/s41598-023-29830-3 T. Putjuso, S. Putjuso, A. Karaphun, P. Moontragoon, I. Kotutha and E. Swatsitang, Sci. Rep., 13, 2531 (2023); https://doi.org/10.1038/s41598-023-29830-3 10.1038/srep43116 L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang and P. Yang, Sci. Rep., 7, 43116 (2017); https://doi.org/10.1038/srep43116 10.1016/j.est.2021.102821 P.D. Patil, S.R. Shingte, V.C. Karade, J.H. Kim, T.D. Dongale, S.H. Mujawar, A.M. Patil and P.B. Patil, J. Energy Storage, 40, 102821 (2021); https://doi.org/10.1016/j.est.2021.102821
Item Type: | Article |
---|---|
Subjects: | Chemistry > Chemical Kinetics |
Domains: | Chemistry |
Depositing User: | Mr IR Admin |
Date Deposited: | 29 Aug 2025 09:03 |
Last Modified: | 29 Aug 2025 09:03 |
URI: | https://ir.vistas.ac.in/id/eprint/10816 |