Rajasekar, C. and Nathan, P. Kurinji and Ranjitha, M. Roselin and Raghu, S. and Kalaivani, R.A. (2025) High-Performance Porous Carbon Electrodes from Tea Residues: A Sustainable Approach for Advanced Supercapacitors. Asian Journal of Chemistry, 37 (6). pp. 1385-1391. ISSN 0970-7077
![[thumbnail of 019-33732+(1385-1391)+2025.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
019-33732+(1385-1391)+2025.pdf
Download (2MB)
Abstract
High-Performance Porous Carbon Electrodes from Tea Residues: A Sustainable Approach for Advanced Supercapacitors C. Rajasekar https://orcid.org/0009-0002-4164-741X P. Kurinji Nathan https://orcid.org/0000-0002-9647-0693 M. Roselin Ranjitha https://orcid.org/0000-0003-2050-5551 S. Raghu https://orcid.org/0000-0001-5348-5353 R.A. Kalaivani https://orcid.org/0000-0003-4745-4651
Carbon electrodes sourced through biomass for application in supercapacitors are currently a significant focus in the development of energy storage devices that prioritize efficiency, environmental sustainability and cost-effectiveness. This investigation highlights a potential avenue for tea residues, concentrating on the conversion of waste to useful resources. Tea residues served as a raw material to produce activated carbon via a simple single-step process, aimed at creating highly efficient electrode material for supercapacitors. The samples were subjected to chemical activation using ZnCl2 at two different temperatures (800 and 900 ºC). Surface area of the two TRAC samples were analyzed using BET technique and noted as 940.14 m2/g and 1158.06 m2/g. The electrochemical investigation was specifically carried out in both aqueous (6 M KOH) and non-aqueous (TEABF4) environments. The TRAC 900 electrode exhibited an impressive specific capacitance of 395.42 F g–1 at 1 A g–1 and displayed exceptional cycling stability, maintaining 96.66% of its capacitance after 16,000 cycles in a non-aqueous environment. Furthermore, the peak power density attained was around 63,000 W kg–1 at an energy density of 35 Wh g–1 when subjected to a higher current density of 10 A g–1. The impressive electrochemical performance suggests that the highly ordered porous carbon electrodes derived from used-tea solid waste represent a promising option for high-performance supercapacitors and exemplify the idea of converting waste into valuable resources.
05 27 2025 1385 1391 https://creativecommons.org/licenses/by/4.0 10.14233/ajchem.2025.33732 https://asianpubs.org/index.php/ajchem/article/view/37_6_19 https://asianpubs.org/index.php/ajchem/article/download/37_6_19/30094 https://asianpubs.org/index.php/ajchem/article/download/37_6_19/30094 10.1021/cr020730k M. Winter and R.J. Brodd, Chem. Rev., 104, 4245 (2004); https://doi.org/10.1021/cr020730k 10.1038/s41598-019-52006-x S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong and A.N. Grace, Sci. Rep., 9, 16315 (2019); https://doi.org/10.1038/s41598-019-52006-x 10.1016/j.est.2021.102646 S. Saini, P. Chand and A. Joshi, J. Energy Storage, 39, 102646 (2021); https://doi.org/10.1016/j.est.2021.102646 10.1016/j.est.2021.102751 M. Alzaid, F. Alsalh and M.Z. Iqbal, J. Energy Storage, 40, 102751 (2021); https://doi.org/10.1016/j.est.2021.102751 10.1080/15567036.2021.1950871 E. Taer, M. Melisa, A. Agustino, R. Taslim, W.S. Mustika and A. Apriwandi, Energy Sources A Recovery Util. Environ. Effects, 47, 9490 (2021); https://doi.org/10.1080/15567036.2021.1950871 10.1002/slct.201803413 D. Chen, L. Yang, J. Li and Q. Wu, ChemistrySelect, 4, 1586 (2019); https://doi.org/10.1002/slct.201803413 10.3390/catal13020286 S.J. Rajasekaran, A.N. Grace, G. Jacob, A. Alodhayb, S. Pandiaraj and V. Raghavan, Catalysts, 13, 286 (2023); https://doi.org/10.3390/catal13020286 10.1149/2.1251914jes L. Sinha and P.M. Shirage, J. Electrochem. Soc., 166, A3496 (2019); https://doi.org/10.1149/2.1251914jes 10.1016/j.est.2020.101877 Y. Song, W. Qu, Y. He, H. Yang, M. Du, A. Wang, Q. Yang and Y. Chen, J. Energy Storage, 32, 101877 (2020); https://doi.org/10.1016/j.est.2020.101877 10.1016/j.est.2020.101831 R. Vinodh, C.V.V.M. Gopi, V.G.R. Kummara, R. Atchudan, T. Ahamad, S. Sambasivam, M. Yi, I.M. Obaidat and H.-J. Kim, J. Energy Storage, 32, 101831 (2020); https://doi.org/10.1016/j.est.2020.101831 10.1038/s41598-022-15477-z A. Shokry, M. Karim, M. Khalil, S. Ebrahim and J. El Nady, Sci. Rep., 12, 11278 (2022); https://doi.org/10.1038/s41598-022-15477-z 10.1016/j.cplett.2020.138019 Z. Ren, H. Luo, H. Mao, A. Li, R. Dong, S. Liu and Y. Liu, Chem. Phys. Lett., 760, 138019 (2020); https://doi.org/10.1016/j.cplett.2020.138019 10.1016/j.apsusc.2020.146801 T. Giannakopoulou, N. Todorova, A. Erotokritaki, N. Plakantonaki, A. Tsetsekou and C. Trapalis, Appl. Surf. Sci., 528, 146801 (2020); https://doi.org/10.1016/j.apsusc.2020.146801 10.1016/j.jelechem.2020.114478 L. Zhang, X. Yu, P. Zhu, R. Sun and C. Wong, J. Electroanal. Chem., 876, 114478 (2020); https://doi.org/10.1016/j.jelechem.2020.114478 10.1016/j.carbon.2020.06.063 Y. Gao, S. Zheng, H. Fu, J. Ma, X. Xu, L. Guan, H. Wu and Z.-S. Wu, Carbon, 168, 701 (2020); https://doi.org/10.1016/j.carbon.2020.06.063 10.1016/j.jelechem.2020.113933 N. Cai, H. Cheng, H. Jin, H. Liu, P. Zhang and M. Wang, J. Electroanal. Chem., 861, 113933 (2020); https://doi.org/10.1016/j.jelechem.2020.113933 10.1016/j.jcis.2018.03.009 C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu and K. Jiang, J. Colloid Interface Sci., 523, 133 (2018); https://doi.org/10.1016/j.jcis.2018.03.009 10.1016/j.diamond.2023.110176 D.R. Lobato-Peralta, E. Duque-Brito, H.O. Orugba, D.M. Arias, A.K. Cuentas-Gallegos, J.A. Okolie and P.U. Okoye, Diamond Rel. Mater., 138, 110176 (2023); https://doi.org/10.1016/j.diamond.2023.110176 10.1016/j.electacta.2016.11.099 Y. Zhang, Z. Gao, N. Song and X. Li, Electrochim. Acta, 222, 1257 (2016); https://doi.org/10.1016/j.electacta.2016.11.099 10.1021/acsomega.2c07932 Z. Qin, Y. Ye, D. Zhang, J. He, J. Zhou and J. Cai, ACS Omega, 8, 5088 (2023); https://doi.org/10.1021/acsomega.2c07932 10.1039/C5RA21708C A. Bello, N. Manyala, F. Barzegar, A.A. Khaleed, D.Y. Momodu and J.K. Dangbegnon, RSC Adv., 6, 1800 (2016); https://doi.org/10.1039/C5RA21708C 10.1002/fsn3.4011 T.G. Çakmak, B. Saricaoglu, G. Ozkan, M. Tomas and E. Capanoglu, Food Sci. Nutr., 12, 3112 (2024); https://doi.org/10.1002/fsn3.4011 10.1021/acsomega.0c00461 B. Li, J. Hu, H. Xiong and Y. Xiao, ACS Omega, 5, 9398 (2020); https://doi.org/10.1021/acsomega.0c00461 10.1016/j.electacta.2019.135588 A. Khan, R.A. Senthil, J. Pan, S. Osman, Y. Sun and X. Shu, Electrochim. Acta, 335, 135588 (2020); https://doi.org/10.1016/j.electacta.2019.135588 10.3390/ma15030895 H. Zhao, H. Zhong, Y. Jiang, H. Li, P. Tang, D. Li and Y. Feng, Materials, 15, 895 (2022); https://doi.org/10.3390/ma15030895 10.1007/s10854-020-04358-8 X.B. Xie, D. Wu, H. Wu, C. Hou, X. Sun, Y. Zhang, R. Yu, S. Zhang, B. Wang and W. Du, J. Mater. Sci. Mater. Electron., 31, 18077 (2020); https://doi.org/10.1007/s10854-020-04358-8 10.1016/j.ultsonch.2021.105519 Y. Yan, S. Manickam, E. Lester, T. Wu and C.H. Pang, Ultrason. Sonochem., 73, 105519 (2021); https://doi.org/10.1016/j.ultsonch.2021.105519 10.1007/s10450-019-00016-6 A. Derylo-Marczewska, K. Skrzypczyñska, K. Kusmierek, A. Swiatkowski and M. Zienkiewicz-Strzalka, Adsorption, 25, 357 (2019); https://doi.org/10.1007/s10450-019-00016-6 10.1016/j.surfin.2018.02.001 M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh and O. Sulaiman, Surf. Interfaces, 11, 1 (2018); https://doi.org/10.1016/j.surfin.2018.02.001 10.1016/j.jpowsour.2024.234988 H. Du, Y. Yang, C. Zhang, Y. Li, J. Wang, K. Zhao, C. Lu, D. Sun, C. Lu, S. Chen and X. Ma, J. Power Sources, 614, 234988 (2024); https://doi.org/10.1016/j.jpowsour.2024.234988 10.3390/molecules29215172 Q. Wang, B. Luo, Z. Wang, Y. Hu and M. Du, Molecules, 29, 5172 (2024); https://doi.org/10.3390/molecules29215172 10.1039/D4GC04103H Y. Li, Q. Liu, Q. Zhang, X. Li, Y. Yang, P. Wang, K. Li, Y. Li, F. Zhong, Q. Liu, Y. Zheng, X. Yang and P. Zhao, Green Chem., 26, 12019 (2024); https://doi.org/10.1039/D4GC04103H 10.1016/j.electacta.2024.144752 T.K. Ghosh, D.L. Singh and G.R. Rao, Electrochim. Acta, 500, 144752 (2024); https://doi.org/10.1016/j.electacta.2024.144752
Item Type: | Article |
---|---|
Subjects: | Chemistry > organic Chemistry |
Domains: | Chemistry |
Depositing User: | Mr IR Admin |
Date Deposited: | 29 Aug 2025 09:05 |
Last Modified: | 29 Aug 2025 09:05 |
URI: | https://ir.vistas.ac.in/id/eprint/10815 |