Rajasekar, C. and Nathan, P. Kurinji and Ranjitha, M. Roselin and Raghu, S. and Kalaivani, R.A. (2025) High-Performance Porous Carbon Electrodes from Tea Residues: A Sustainable Approach for Advanced Supercapacitors. Asian Journal of Chemistry, 37 (6). pp. 1385-1391. ISSN 0970-7077
![[thumbnail of 019-33732+(1385-1391)+2025.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png) Text
            
              
Text
019-33732+(1385-1391)+2025.pdf
Download (2MB)
Abstract
High-Performance Porous Carbon Electrodes from Tea Residues: A Sustainable Approach for Advanced Supercapacitors C. Rajasekar https://orcid.org/0009-0002-4164-741X P. Kurinji Nathan https://orcid.org/0000-0002-9647-0693 M. Roselin Ranjitha https://orcid.org/0000-0003-2050-5551 S. Raghu https://orcid.org/0000-0001-5348-5353 R.A. Kalaivani https://orcid.org/0000-0003-4745-4651
Carbon electrodes sourced through biomass for application in supercapacitors are currently a significant focus in the development of energy storage devices that prioritize efficiency, environmental sustainability and cost-effectiveness. This investigation highlights a potential avenue for tea residues, concentrating on the conversion of waste to useful resources. Tea residues served as a raw material to produce activated carbon via a simple single-step process, aimed at creating highly efficient electrode material for supercapacitors. The samples were subjected to chemical activation using ZnCl2 at two different temperatures (800 and 900 ºC). Surface area of the two TRAC samples were analyzed using BET technique and noted as 940.14 m2/g and 1158.06 m2/g. The electrochemical investigation was specifically carried out in both aqueous (6 M KOH) and non-aqueous (TEABF4) environments. The TRAC 900 electrode exhibited an impressive specific capacitance of 395.42 F g–1 at 1 A g–1 and displayed exceptional cycling stability, maintaining 96.66% of its capacitance after 16,000 cycles in a non-aqueous environment. Furthermore, the peak power density attained was around 63,000 W kg–1 at an energy density of 35 Wh g–1 when subjected to a higher current density of 10 A g–1. The impressive electrochemical performance suggests that the highly ordered porous carbon electrodes derived from used-tea solid waste represent a promising option for high-performance supercapacitors and exemplify the idea of converting waste into valuable resources.
   05 27 2025   1385 1391   https://creativecommons.org/licenses/by/4.0   10.14233/ajchem.2025.33732 https://asianpubs.org/index.php/ajchem/article/view/37_6_19   https://asianpubs.org/index.php/ajchem/article/download/37_6_19/30094     https://asianpubs.org/index.php/ajchem/article/download/37_6_19/30094      10.1021/cr020730k M. Winter and R.J. Brodd, Chem. Rev., 104, 4245 (2004); https://doi.org/10.1021/cr020730k   10.1038/s41598-019-52006-x S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong and A.N. Grace, Sci. Rep., 9, 16315 (2019); https://doi.org/10.1038/s41598-019-52006-x   10.1016/j.est.2021.102646 S. Saini, P. Chand and A. Joshi, J. Energy Storage, 39, 102646 (2021); https://doi.org/10.1016/j.est.2021.102646   10.1016/j.est.2021.102751 M. Alzaid, F. Alsalh and M.Z. Iqbal, J. Energy Storage, 40, 102751 (2021); https://doi.org/10.1016/j.est.2021.102751   10.1080/15567036.2021.1950871 E. Taer, M. Melisa, A. Agustino, R. Taslim, W.S. Mustika and A. Apriwandi, Energy Sources A Recovery Util. Environ. Effects, 47, 9490 (2021); https://doi.org/10.1080/15567036.2021.1950871   10.1002/slct.201803413 D. Chen, L. Yang, J. Li and Q. Wu, ChemistrySelect, 4, 1586 (2019); https://doi.org/10.1002/slct.201803413   10.3390/catal13020286 S.J. Rajasekaran, A.N. Grace, G. Jacob, A. Alodhayb, S. Pandiaraj and V. Raghavan, Catalysts, 13, 286 (2023); https://doi.org/10.3390/catal13020286   10.1149/2.1251914jes L. Sinha and P.M. Shirage, J. Electrochem. Soc., 166, A3496 (2019); https://doi.org/10.1149/2.1251914jes   10.1016/j.est.2020.101877 Y. Song, W. Qu, Y. He, H. Yang, M. Du, A. Wang, Q. Yang and Y. Chen, J. Energy Storage, 32, 101877 (2020); https://doi.org/10.1016/j.est.2020.101877   10.1016/j.est.2020.101831 R. Vinodh, C.V.V.M. Gopi, V.G.R. Kummara, R. Atchudan, T. Ahamad, S. Sambasivam, M. Yi, I.M. Obaidat and H.-J. Kim, J. Energy Storage, 32, 101831 (2020); https://doi.org/10.1016/j.est.2020.101831   10.1038/s41598-022-15477-z A. Shokry, M. Karim, M. Khalil, S. Ebrahim and J. El Nady, Sci. Rep., 12, 11278 (2022); https://doi.org/10.1038/s41598-022-15477-z   10.1016/j.cplett.2020.138019 Z. Ren, H. Luo, H. Mao, A. Li, R. Dong, S. Liu and Y. Liu, Chem. Phys. Lett., 760, 138019 (2020); https://doi.org/10.1016/j.cplett.2020.138019   10.1016/j.apsusc.2020.146801 T. Giannakopoulou, N. Todorova, A. Erotokritaki, N. Plakantonaki, A. Tsetsekou and C. Trapalis, Appl. Surf. Sci., 528, 146801 (2020); https://doi.org/10.1016/j.apsusc.2020.146801   10.1016/j.jelechem.2020.114478 L. Zhang, X. Yu, P. Zhu, R. Sun and C. Wong, J. Electroanal. Chem., 876, 114478 (2020); https://doi.org/10.1016/j.jelechem.2020.114478   10.1016/j.carbon.2020.06.063 Y. Gao, S. Zheng, H. Fu, J. Ma, X. Xu, L. Guan, H. Wu and Z.-S. Wu, Carbon, 168, 701 (2020); https://doi.org/10.1016/j.carbon.2020.06.063   10.1016/j.jelechem.2020.113933 N. Cai, H. Cheng, H. Jin, H. Liu, P. Zhang and M. Wang, J. Electroanal. Chem., 861, 113933 (2020); https://doi.org/10.1016/j.jelechem.2020.113933   10.1016/j.jcis.2018.03.009 C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu and K. Jiang, J. Colloid Interface Sci., 523, 133 (2018); https://doi.org/10.1016/j.jcis.2018.03.009   10.1016/j.diamond.2023.110176 D.R. Lobato-Peralta, E. Duque-Brito, H.O. Orugba, D.M. Arias, A.K. Cuentas-Gallegos, J.A. Okolie and P.U. Okoye, Diamond Rel. Mater., 138, 110176 (2023); https://doi.org/10.1016/j.diamond.2023.110176   10.1016/j.electacta.2016.11.099 Y. Zhang, Z. Gao, N. Song and X. Li, Electrochim. Acta, 222, 1257 (2016); https://doi.org/10.1016/j.electacta.2016.11.099   10.1021/acsomega.2c07932 Z. Qin, Y. Ye, D. Zhang, J. He, J. Zhou and J. Cai, ACS Omega, 8, 5088 (2023); https://doi.org/10.1021/acsomega.2c07932   10.1039/C5RA21708C A. Bello, N. Manyala, F. Barzegar, A.A. Khaleed, D.Y. Momodu and J.K. Dangbegnon, RSC Adv., 6, 1800 (2016); https://doi.org/10.1039/C5RA21708C   10.1002/fsn3.4011 T.G. Çakmak, B. Saricaoglu, G. Ozkan, M. Tomas and E. Capanoglu, Food Sci. Nutr., 12, 3112 (2024); https://doi.org/10.1002/fsn3.4011   10.1021/acsomega.0c00461 B. Li, J. Hu, H. Xiong and Y. Xiao, ACS Omega, 5, 9398 (2020); https://doi.org/10.1021/acsomega.0c00461   10.1016/j.electacta.2019.135588 A. Khan, R.A. Senthil, J. Pan, S. Osman, Y. Sun and X. Shu, Electrochim. Acta, 335, 135588 (2020); https://doi.org/10.1016/j.electacta.2019.135588   10.3390/ma15030895 H. Zhao, H. Zhong, Y. Jiang, H. Li, P. Tang, D. Li and Y. Feng, Materials, 15, 895 (2022); https://doi.org/10.3390/ma15030895   10.1007/s10854-020-04358-8 X.B. Xie, D. Wu, H. Wu, C. Hou, X. Sun, Y. Zhang, R. Yu, S. Zhang, B. Wang and W. Du, J. Mater. Sci. Mater. Electron., 31, 18077 (2020); https://doi.org/10.1007/s10854-020-04358-8   10.1016/j.ultsonch.2021.105519 Y. Yan, S. Manickam, E. Lester, T. Wu and C.H. Pang, Ultrason. Sonochem., 73, 105519 (2021); https://doi.org/10.1016/j.ultsonch.2021.105519   10.1007/s10450-019-00016-6 A. Derylo-Marczewska, K. Skrzypczyñska, K. Kusmierek, A. Swiatkowski and M. Zienkiewicz-Strzalka, Adsorption, 25, 357 (2019); https://doi.org/10.1007/s10450-019-00016-6   10.1016/j.surfin.2018.02.001 M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh and O. Sulaiman, Surf. Interfaces, 11, 1 (2018); https://doi.org/10.1016/j.surfin.2018.02.001   10.1016/j.jpowsour.2024.234988 H. Du, Y. Yang, C. Zhang, Y. Li, J. Wang, K. Zhao, C. Lu, D. Sun, C. Lu, S. Chen and X. Ma, J. Power Sources, 614, 234988 (2024); https://doi.org/10.1016/j.jpowsour.2024.234988   10.3390/molecules29215172 Q. Wang, B. Luo, Z. Wang, Y. Hu and M. Du, Molecules, 29, 5172 (2024); https://doi.org/10.3390/molecules29215172   10.1039/D4GC04103H Y. Li, Q. Liu, Q. Zhang, X. Li, Y. Yang, P. Wang, K. Li, Y. Li, F. Zhong, Q. Liu, Y. Zheng, X. Yang and P. Zhao, Green Chem., 26, 12019 (2024); https://doi.org/10.1039/D4GC04103H   10.1016/j.electacta.2024.144752 T.K. Ghosh, D.L. Singh and G.R. Rao, Electrochim. Acta, 500, 144752 (2024); https://doi.org/10.1016/j.electacta.2024.144752
| Item Type: | Article | 
|---|---|
| Subjects: | Chemistry > organic Chemistry | 
| Domains: | Chemistry | 
| Depositing User: | Mr IR Admin | 
| Date Deposited: | 29 Aug 2025 09:05 | 
| Last Modified: | 29 Aug 2025 09:05 | 
| URI: | https://ir.vistas.ac.in/id/eprint/10815 | 



 Dimensions
 Dimensions Dimensions
 Dimensions