Machine Learning Framework for Detecting Fake News and Combating Misinformation Spread on Facebook Platforms

Poondy, Rajan Y and Kishore, Kunal and Anitha, Palanisamy and Senthil Kumar, Rajendran and Rupesh, Gupta and Madeshwaren, Vairavel (2025) Machine Learning Framework for Detecting Fake News and Combating Misinformation Spread on Facebook Platforms. International Journal of Computational and Experimental Science and Engineering, 11 (2). ISSN 2149-9144

[thumbnail of final+1492.pdf] Text
final+1492.pdf

Download (1MB)

Abstract

Machine Learning Framework for Detecting Fake News and Combating Misinformation Spread on Facebook Platforms Poondy Rajan Y Kishore Kunal Anitha Palanisamy Senthil Kumar Rajendran Rupesh Gupta Vairavel Madeshwaren

The spread of fake news on social media platforms like Facebook threatens societal harmony and undermines the reliability of information. To address this issue, this research employs machine learning techniques to construct a robust and scalable framework for detecting fake news. Using a well-curated dataset of labeled Facebook posts containing both authentic and fake news, the study ensures a balanced representation for effective learning. Textual data was transformed into numerical features through Term Frequency-Inverse Document Frequency (TF-IDF) preprocessing, enabling seamless integration with machine learning algorithms. A variety of classification models, including Support Vector Machines (SVM), Logistic Regression, Gradient Boosting, and Random Forest, were trained and evaluated. Six performance evaluations precision, accuracy, F1 score, recall, Matthews Correlation Coefficient (MCC), and area under the Receiver Operating Characteristic (ROC) curve—were used to measure model effectiveness. The results highlighted Gradient Boosting as the most effective algorithm, achieving superior accuracy and overall performance. This framework demonstrates the capability of machine learning to automate the detection of misinformation, offering a scalable and efficient solution for preserving content credibility on Facebook. The study contributes significantly to the broader effort of combating misinformation, ensuring the dissemination of reliable information, and safeguarding public trust on social media platforms
04 13 2025 https://creativecommons.org/licenses/by/4.0 10.22399/ijcesen.1492 https://www.ijcesen.com/index.php/ijcesen/article/view/1492 https://www.ijcesen.com/index.php/ijcesen/article/download/1492/675 https://www.ijcesen.com/index.php/ijcesen/article/download/1492/675 10.1088/1757-899X/1099/1/012040 Khanam, Z., Alwasel, B. N., Sirafi, H., & Rashid, M. (2021). Fake news detection using machine learning approaches. IOP Conference Series: Materials Science and Engineering, 1099(1): 012040. DOI: 10.1088/1757-899X/1099/1/012040. 10.22214/ijraset.2020.6125 Sharma, U., Saran, S., & Patil, S. M. (2020). Fake news detection using machine learning algorithms. International Journal of Creative Research Thoughts (IJCRT), 8(6): 509–518. 10.1155/2020/8885861 Ahmad, I., Yousaf, M., Yousaf, S., & Ahmad, M. O. (2020). Fake news detection using machine learning ensemble methods. Complexity, 2020(1): 8885861. DOI: 10.1155/2020/8885861. 10.1155/2020/8885861 Ahmad, I., Yousaf, M., Yousaf, S., & Ahmad, M. O. (2020). Fake news detection using machine learning ensemble methods. Complexity, 2020(1): 8885861. DOI: 10.1155/2020/8885861. 10.1109/iSSSC50941.2020.9358890 Shaikh, J., & Patil, R. (2020). Fake news detection using machine learning. IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), 1–5. DOI: 10.1109/iSSSC51489.2020.9359411. 10.1109/IHSH51661.2021.9378748 Baarir, N. F., & Djeffal, A. (2021). Fake news detection using machine learning. 2nd International Workshop on Human-Centric Smart Environments for Health and Well-Being (IHSH), 125–130. DOI: 10.1109/IHSH51661.2020.9378797. 10.1016/j.asoc.2020.106983 Sahoo, S. R., & Gupta, B. B. (2021). Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100: 106983. DOI: 10.1016/j.asoc.2020.106983. 10.1109/ISCAIE47305.2020.9108841 Kong, S. H., Tan, L. M., Gan, K. H., & Samsudin, N. H. (2020). Fake news detection using deep learning. IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 102–107. DOI: 10.1109/ISCAIE47305.2020.9108785. 10.1109/ACCESS.2021.3129329 Mridha, M. F., Keya, A. J., Hamid, M. A., Monowar, M. M., & Rahman, M. S. (2021). A comprehensive review on fake news detection with deep learning. IEEE Access, 9: 156151–156170. DOI: 10.1109/ACCESS.2021.3129933. 10.1109/INCET51464.2021.9456299 Choudhary, M., Jha, S., Saxena, D., & Singh, A. K. (2021). A review of fake news detection methods using machine learning. 2nd International Conference for Emerging Technology (INCET), 1–5. DOI: 10.1109/INCET51464.2021.9456208. 10.1002/ett.3767 Kumar, S., Asthana, R., Upadhyay, S., Upreti, N., & Akbar, M. (2020). Fake news detection using deep learning models: A novel approach. Transactions on Emerging Telecommunications Technologies, 31(2): e3767. DOI: 10.1002/ett.3767. Ahmed, A. A. A., Aljabouh, A., Donepudi, P. K., & Choi, M. S. (2021). Detecting fake news using machine learning: A systematic literature review. arXiv Preprint, arXiv:2102.04458. 10.1016/j.matpr.2022.03.351 Raja, M. S., & Raj, L. A. (2022). Fake news detection on social networks using machine learning techniques. Materials Today: Proceedings, 62: 4821–4827. DOI: 10.1016/j.matpr.2022.02.247. 10.1016/j.mlwa.2021.100032 Khan, J. Y., Khondaker, M. T. I., Afroz, S., Uddin, G., & Iqbal, A. (2021). A benchmark study of machine learning models for online fake news detection. Machine Learning with Applications, 4: 100032. DOI: 10.1016/j.mlwa.2020.100032. 10.1109/CSDE50874.2020.9411638 Ngada, O., & Haskins, B. (2020). Fake news detection using content-based features and machine learning. IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 1–6. DOI: 10.1109/CSDE50874.2020.9411563. 10.1016/j.eswa.2022.118558 Kishwar, A., & Zafar, A. (2023). Fake news detection on Pakistani news using machine learning and deep learning. Expert Systems with Applications, 211: 118558. DOI: 10.1016/j.eswa.2022.118558. 10.1109/ICCIT51783.2020.9392662 Mugdha, S. B. S., Ferdous, S. M., & Fahmin, A. (2020). Evaluating machine learning algorithms for Bengali fake news detection. 23rd International Conference on Computer and Information Technology (ICCIT), 1–6. DOI: 10.1109/ICCIT51783.2020.9392705. 10.1109/CCIP57447.2022.10058670 Pradeepa, K., Bharathiraja, N., Meenakshi, D., Hariharan, S., Kathiravan, M., & Kumar, V. (2022, December). Artificial neural networks in healthcare for augmented reality. In 2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP) (pp. 1-5). IEEE. https://doi.org/10.1109/CCIP57447.2022.10058670 10.1109/ICESC57686.2023.10192988 Kathiravan, M., Ramya, M., Jayanthi, S., Reddy, V. V., Ponguru, L., & Bharathiraja, N. (2023, July). Predicting the sale price of pre-owned vehicles with the ensemble ML model. In 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1793-1797). IEEE. https://doi.org/10.1109/ICESC57686.2023.10192988 10.22399/ijcesen.1103 S. Shyni Carmel Mary, Kishore Kunal, & Madeshwaren, V. (2025). IoT and Blockchain in Supply Chain Management for Advancing Sustainability and Operational Optimization. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1103 10.1109/CISCT55310.2022.10046447 Bhaskaran, S., Hariharan, S., Veeramanickam, M. R., Bharathiraja, N., Pradeepa, K., & Marappan, R. (2022, December). Recommendation system using inference-based graph learning–modeling and analysis. In 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT) (pp. 1-5). IEEE. https://doi.org/10.1109/CISCT55310.2022.10046447 10.1007/s11277-021-08570-5 Anand, M., Antonidoss, A., Balamanigandan, R., Rahmath Nisha, S., Gurunathan, K., & Bharathiraja, N. (2022). Resourceful routing algorithm for mobile ad-hoc network to enhance energy utilization. Wireless Personal Communications, 127(Suppl 1), 7-8.https://doi.org/10.1007/s11277-021-08570-5 10.1109/ICAIS56108.2023.10073834 Menaka, S., Harshika, J., Philip, S., John, R., Bharathiraja, N., & Murugesan, S. (2023, February). Analysing the accuracy of detecting phishing websites using ensemble methods in machine learning. In 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 1251-1256). IEEE. https://doi.org/10.1109/ICAIS56108.2023.10073834 10.22399/ijasrar.21 Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.21 10.22399/ijcesen.839 N.B. Mahesh Kumar, T. Chithrakumar, T. Thangarasan, J. Dhanasekar, & P. Logamurthy. (2025). AI-Powered Early Detection and Prevention System for Student Dropout Risk. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.839 10.22399/ijcesen.782 P. Rathika, S. Yamunadevi, P. Ponni, V. Parthipan, & P. Anju. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.782 10.22399/ijasrar.20 Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.20 K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936 10.22399/ijcesen.806 Wang, S., & Koning, S. bin I. (2025). Social and Cognitive Predictors of Collaborative Learning in Music Ensembles. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.806 10.22399/ijasrar.19 Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.19 10.22399/ijcesen.826 Anakal, S., K. Krishna Prasad, Chandrashekhar Uppin, & M. Dileep Kumar. (2025). Diagnosis, visualisation and analysis of COVID-19 using Machine learning. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.826 10.22399/ijcesen.799 S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799 10.22399/ijasrar.18 Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.18

Item Type: Article
Subjects: Computer Science Engineering > Machine Learning
Domains: Management Studies
Depositing User: Mr IR Admin
Date Deposited: 29 Aug 2025 10:51
Last Modified: 29 Aug 2025 10:51
URI: https://ir.vistas.ac.in/id/eprint/10774

Actions (login required)

View Item
View Item