Identification of potential antidiabetic inhibitor from Mimosa pudica Linn. through in silico molecular modeling and DFT tools

Palanichamy, Chandrasekar and Pavadai, Parasuraman and Theivendren, Panneerselvam and Sundar, Madasamy and Santhana Krishna Kumar, Alagarsamy and Kunjiappan, Selvaraj (2025) Identification of potential antidiabetic inhibitor from Mimosa pudica Linn. through in silico molecular modeling and DFT tools. Journal of Research in Pharmacy, 29 (4). pp. 1468-1484. ISSN 2630-6344

[thumbnail of 10.12991-jrespharm.1734539-5021779.pdf] Text
10.12991-jrespharm.1734539-5021779.pdf

Download (1MB)

Abstract

Identification of potential antidiabetic inhibitor from Mimosa pudica Linn. through in silico molecular modeling and DFT tools Chandrasekar Palanichamy Department of Biotechnology, Kalasalingam Academy of Research and Education Parasuraman Pavadai Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences Panneerselvam Theivendren Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies Madasamy Sundar Department of Biotechnology, Kalasalingam Academy of Research and Education Alagarsamy Santhana Krishna Kumar Department of Chemistry, National Sun Yat-sen University Selvaraj Kunjiappan Department of Biotechnology, Kalasalingam Academy of Research and Education

Presently prescribed synthetic antidiabetic drugs effectively manage type 2 diabetes mellitus (T2DM) and, at the same time, cause severe toxic side effects. Generating novel molecules is significantly hampered by their longer time and insufficient physicochemical, pharmacokinetic, and intrinsic properties. In this view, a potential antidiabetic inhibitor from Mimosa pudica L. can be identified via in silico molecular modeling and Density Functional Theory (DFT) tools for effi-ciently managing T2DM with minimal side effects. Primarily, we evaluated the network analysis to observe the genes, proteins, and enzymes contributing to the signaling network of Peroxisome proliferator-activated receptors (PPARs) family proteins and identified PPARγ as a potential antidiabetic receptor protein. Thirty-six bioactive molecules were picked from M. pudica L. ethanolic extract through LC-MS and GC-MS analysis of our previous study report. Based on the pilot study, the selected molecule’s structure was drawn using Chemsketch software and docked against the PPARγ receptor. Interestingly, three high-scoring molecules were observed, namely, apigetrin (-8.6 kcal/mol), orientin ( 8.5 kcal/mol), isoquercetin (-8.3 kcal/mol), whereas compared to standard reference drug pioglitazone (-8.3 kcal/mol). In addition, molecular dynamics (MD) simulation research to discover intermolecular interactions and the stability of protein-ligand complexes. The in silico ADME&T studies displayed that apigetrin showed drug-like behaviours and less toxic effects. Further, MD simulation studies established the stability of apigetrin and orientin with the PPARγ protein binding pockets. According to these discoveries, the top-scored molecule, apigetrin, might be used as a potential antidiabetic inhibitor and can be used as a new optional medicine for the therapy of T2DM.
07 05 2025 08 22 2024 1468 1484 10.12991/jrespharm.1734539 http://dergipark.org.tr/en/doi/10.12991/jrespharm.1734539 10.12968/bjon.2007.16.16.27079 [1] Meetoo D, McGovern P, Safadi R. An epidemiological overview of diabetes across the world. Br J Nur. 2007; 16: 1002-1007. https://doi.org/10.12968/bjon.2007.16.16.27079 10.3389/fpubh.2021.559595 [2] Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, León-Buitimea A, Vázquez-León P, Morones-Ramírez JR, Villalón CM, Quintanar-Stephano A, Marichal-Cancino BA. Susceptibility for some infectious diseases in patients with diabetes: The key role of glycemia. Front Public Health. 2021; 9: 559595. https://doi.org/10.3389/fpubh.2021.559595 10.1038/hr.2017.75 [3] Leggio M, Lombardi M, Caldarone E, Severi P, D'emidio S, Armeni M, Bravi V, Bendini MG, Mazza A. The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res. 2017; 40: 947-963. https://doi.org/10.1038/hr.2017.75 10.4103/ijo.IJO_1627_21 [4] Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Ind J Ophthalmol. 2021; 69: 2932-2938. https://doi.org/10.4103/ijo.ijo_1627_21 10.1088/1748-605X/aabcea [5] Kunjiappan S, Panneerselvam T, Prasad P, Sukumaran S, Somasundaram B, Sankaranarayanan M, Murugan I, Parasuraman P. Design, graph theoretical analysis and in silico modeling of Dunaliella bardawil biomass encapsulated keratin nanoparticles: A scaffold for effective glucose utilization. Biomed Mat. 2018; 13: 045012. http://dx.doi.org/10.1088/1748-605X/aabcea. 10.4093/dmj.2021.0377 [6] Kim J, Kwon HS. Not control but conquest: strategies for the remission of type 2 diabetes mellitus. Diabet Metabolism J. 2022; 46: 165-180. https://doi.org/10.4093/dmj.2021.0377 10.4239/wjd.v5.i4.444 [7] Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabet. 2014; 5: 444. https://doi.org/10.4239%2Fwjd.v5.i4.444 10.2174/138955705774575273 [8] Das SK, Chakrabarti R. Non-insulin dependent diabetes mellitus: Present therapies and new drug targets. Mini Rev Med Chem. 2005; 5: 1019-1034. https://doi.org/10.2174/138955705774575273 10.3390/molecules25081987 [9] Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules. 2020; 25: 1987. https://doi.org/10.3390/molecules25081987 10.3390/biomedicines9020226 [10] Al-Mrabeh A. β-Cell dysfunction, hepatic lipid metabolism, and cardiovascular health in type 2 diabetes: new directions of research and novel therapeutic strategies. Biomedicines. 2021;9(2):226. https://doi.org/10.3390/biomedicines9020226 10.1007/978-3-030-92196-5_1 [11] Dinda B, Saha S. Obesity and Diabetes. In Natural Products in Obesity and Diabetes: Therapeutic Potential and Role in Prevention and Treatment; Springer: 2022; pp. 1-61. 10.1002/btpr.2904 [12] Kunjiappan S, Theivendren P, Pavadai P, Govindaraj S, Sankaranarayanan M, Somasundaram B, Arunachalam S, Ram Kumar Pandian S, Ammunje DN. Design and in silico modeling of indoloquinoxaline incorporated keratin nanoparticles for modulation of glucose metabolism in 3T3‐L1 adipocytes. Biotechnol Prog. 2020; 36: e2904. https://doi.org/10.1002/btpr.2904 10.1016/S0022-5193(05)80161-4 [13] Savinell JM, Palsson BO. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol. 1992; 154: 421-454. https://doi.org/10.1016/s0022-5193(05)80161-4 10.2174/1574888X10666150528144905 [14] Shao X, Wang M, Wei X, Deng S, Fu N, Peng Q, Jiang Y, Ye L, Xie J, Lin Y. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther. 2016; 11: 282-289. https://doi.org/10.2174/1574888x10666150528144905 10.1111/1541-4337.12184 [15] Muhammad G, Hussain MA, Jantan I, Bukhari SNA. Mimosa pudica L., a high‐value medicinal plant as a source of bioactives for pharmaceuticals. Compr Rev Food Sci Food Saf. 2016; 15: 303-315. https://doi.org/10.1111/1541 4337.12184 10.1080/07391102.2023.2292302 [16] Palanichamy C, Nayak Ammunje D, Pavadai P, Ram Kumar Pandian S, Theivendren P, Kabilan SJ, Babkiewicz E, Maszczyk P, Kunjiappan S. Mimosa pudica Linn. extract improves aphrodisiac performance in diabetes-induced male Wister rats. J Biomol Struct Dyn. 2025;43(4):1621-1640. https://doi.org/10.1080/07391102.2023.2292302 10.3389/fendo.2017.00006 [17] Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol. 2017; 8: 6. https://doi.org/10.3389%2Ffendo.2017.00006 10.3390/molecules27134278 [18] Ansari P, Akther S, Hannan J, Seidel V, Nujat NJ, Abdel-Wahab YH. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules. 2022; 27: 4278. https://doi.org/10.3390%2Fmolecules27134278 10.3390/molecules26144333 [19] Shehadeh MB, Suaifan GA, Abu-Odeh AM. Plants secondary metabolites as blood glucose-lowering molecules. Molecules. 2021; 26: 4333. https://doi.org/10.3390/molecules26144333 10.1038/s41598-021-01008-9 [20] Kalimuthu AK, Panneerselvam T, Pavadai P, Pandian SRK, Sundar K, Murugesan S, Ammunje DN, Kumar S, Arunachalam S, Kunjiappan S. Pharmacoinformatics-based investigation of bioactive compounds of Rasam (South Indian recipe) against human cancer. Sci Rep. 2021; 11: 21488. https://doi.org/10.1038/s41598-021-01008-9 10.3390/molecules27123799 [21] Palanichamy C, Pavadai P, Panneerselvam T, Arunachalam S, Babkiewicz E, Ram Kumar Pandian S, Shanmugampillai Jeyarajaguru K, Nayak Ammunje D, Kannan S, Chandrasekaran J. Aphrodisiac performance of bioactive compounds from Mimosa pudica Linn.: In silico molecular docking and dynamics simulation approach. Molecules. 2022; 27: 3799. https://doi.org/10.3390/molecules27123799 10.1016/S0739-7240(01)00117-5 [22] Houseknecht KL, Cole BM, Steele PJ. Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: a review. Domest Anim Endocrinol. 2002; 22: 1-23. https://doi.org/10.1016/S0739-7240(01)00117-5 10.1007/978-981-13-7205-6_2 [23] Anwar N, Teo YK, Tan JBL. The role of plant metabolites in drug discovery: Current challenges and future perspectives. In: Natural Bio-active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices. Springer, Singapore, 2019, pp.25-51. https://doi.org/10.1007/978-981-13-7205-6_2. [24] Benet LZ, Kroetz D, Sheiner L, Hardman J, Limbird L. Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination. In: Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 9th Edition. Mcgraw-Hill, New York, 1996, 3, e27. 10.3390/molecules26041109 [25] Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 2021; 26: 1109. https://doi.org/10.3390/molecules26041109 10.1007/s40203-023-00180-2 [26] Daniel DJP, Shanmugasundaram S, Chandra Mohan KS, Siva Bharathi V, Abraham JK, Anbazhagan P, Pavadai P, Ram Kumar Pandian S, Sundar K, Kunjiappan S. Elucidating the role of phytocompounds from Brassica oleracea var. italic (Broccoli) on hyperthyroidism: an in-silico approach. In Silico Pharmacol. 2024; 12: 6. https://doi.org/10.1007/s40203-023-00180-2 10.1007/s11030-022-10516-3 [27] Chandrasekaran J, Elumalai S, Murugesan V, Kunjiappan S, Pavadai P, Theivendren P. Computational design of PD-L1 small molecule inhibitors for cancer therapy. Mol Divers. 2023; 27: 1633-1644. https://doi.org/10.1007/s11030-022-10516-3 10.1038/srep42717 [28] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7: 42717. https://doi.org/10.1038/srep42717 10.3390/jox13040039 [29] Pampalakis G. Underestimations in the In Silico-Predicted Toxicities of V-Agents. J Xenobiotics. 2023; 13: 615-624. https://doi.org/10.3390%2Fjox13040039 10.2174/9789815179934123010009 [30] Prieto-Martínez FD, Galván-Ciprés, Y. Colín-Lozano, B. Molecular simulation in drug design: An overview of molecular dynamics methods. In: Applied Computer-Aided Drug Design: Models and Methods, 2023, p.202. https://doi.org/10.2174/9789815179934123010009 10.1039/D1RA07377J [31] Gopinath P, Kathiravan, M. Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity. RSC Adv. 2021; 11: 38079-38093. https://doi.org/10.1039/D1RA07377 10.1063/1.5054056 [32] Espinosa JR, Wand CR, Vega, C. Sanz, E. Frenkel, D. Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water. J Chem Phy. 2018; 149. https://doi.org/10.1063/1.5054056 10.1063/1.4825247 [33] Lippert RA, Predescu C, Ierardi DJ, Mackenzie KM, Eastwood MP, Dror RO, Shaw DE. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J Chem Phy. 2013; 139. https://doi.org/10.1063/1.4825247 10.1063/5.0193281 [35] Janek J, Kolafa J. Novel barostat implementation for molecular dynamics. J Chem Phy. 2024; 160. https://doi.org/10.1063/5.0193281 [36] Piston K. Atomistic Investigation of Nucleosomal H3 Histone Tail in Unmodified and Epigenetically Modified States. Syracuse University, 2022.

Item Type: Article
Subjects: Pharmaceutical Chemistry and Analysis > Pharmaceutical Chemistry
Domains: Pharmaceutical Chemistry and Analysis
Depositing User: Mr IR Admin
Date Deposited: 29 Aug 2025 11:00
Last Modified: 29 Aug 2025 11:00
URI: https://ir.vistas.ac.in/id/eprint/10770

Actions (login required)

View Item
View Item