Husain Bathushaw, M. and Nagasundaram, S. (2024) The Role of Blockchain and AI in Fortifying Cybersecurity for Healthcare Systems. International Journal of Computational and Experimental Science and Engineering, 10 (4). ISSN 2149-9144
![[thumbnail of final+596.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
final+596.pdf
Download (962kB)
Abstract
The Role of Blockchain and AI in Fortifying Cybersecurity for Healthcare Systems M. Husain Bathushaw S. Nagasundaram
In a simulated healthcare setting, the algorithms were assessed based on organized threat insight data, inconsistency location executed with blockchain-enhanced access control, and machine learning-driven interruption detection. The test results depiction showed that all calculations were feasible, with an accuracy range of 0.88-0.94 and lift defined between 0.75 and 1; knowledge values ranging from.86 to.92, and F1 scores between and above.90 results are displayed as follows: Above all, TIAA excelled in risk insights management; ADA exceeded expectations in detecting inconsistencies; BACA used blockchain to fortify access control; and ML-IDS produced remarkable results in intrusion detection. The importance of these algorithms in addressing particular cybersecurity concerns in the healthcare industry is highlighted through a comparative comparison with similar studies. The suggested algorithms are relevant to the growing conversation about cybersecurity in healthcare because they offer a comprehensive strategy to protect private health data, guarantee the reliability of assessment models, and fortify organizations against a variety of evolving cyberthreats.
11 24 2024 https://creativecommons.org/licenses/by/4.0 10.22399/ijcesen.596 https://ijcesen.com/index.php/ijcesen/article/view/596 https://ijcesen.com/index.php/ijcesen/article/download/596/389 https://ijcesen.com/index.php/ijcesen/article/download/596/389 Akansh Garg Dr. C Gurudas Nayak , Rakshitha Kiran P , Dr. Surendra Singh Rajpurohit , Dr. Farook Sayyad. (2024). Different Applications Of Block Chain Technology Belong To Supply Chain Management. S9 (2024), 698-704, 21. 10.3390/su151813725 Al-baity, H. (2023). The Artificial Intelligence Revolution in Digital Finance in Saudi Arabia: A Comprehensive Review and Proposed Framework. Sustainability, 15(18);13725. https://doi.org/10.3390/su151813725 10.3390/su16188144 Albarrak, A.M. (2024). Integration of Cybersecurity, Usability, and Human-Computer Interaction for Securing Energy Management Systems. Sustainability, 16(18);8144. https://doi.org/10.3390/su16188144 10.3390/computers13010027 Albshaier, L., Almarri, S. and Hafizur Rahman, ,M.M. (2024). A Review of Blockchain’s Role in E-Commerce Transactions: Open Challenges, and Future Research Directions. Computers, 13(1);27. DOI:10.3390/computers13010027 10.3390/drones8040153 Aldossri, R., Aljughaiman, A. and Albuali, A. (2024). Advancing Drone Operations through Lightweight Blockchain and Fog Computing Integration: A Systematic Review. Drones, 8(4);153. https://doi.org/10.3390/drones8040153 10.1371/journal.pone.0302559 Alhakami, W. (2024). Evaluating modern intrusion detection methods in the face of Gen V multi-vector attacks with fuzzy AHP-TOPSIS. PLoS One, 19(5). 10.3390/blockchains2030011 Alkhaldi, B. and Al-omary, A. (2024). Supply-Blockchain Functional Prototype for Optimizing Port Operations Using Hyperledger Fabric. Blockchains, 2(3);217. https://doi.org/10.3390/blockchains2030011 10.3390/jcp3040031 Ayat-allah Bouramdane. (2023). Cyberattacks in Smart Grids: Challenges and Solving the Multi-Criteria Decision-Making for Cybersecurity Options, Including Ones That Incorporate Artificial Intelligence, Using an Analytical Hierarchy Process. Journal of Cybersecurity and Privacy, 3(4);662. https://doi.org/10.3390/jcp3040031 10.3390/en17081964 Bai-qiao, C., Liu, K., Yu, T. and Li, R. (2024). Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review. Energies, 17(8);1964. https://doi.org/10.3390/en17081964 Bathula, A., Gupta, S.K., Merugu, S., Saba, L., Khanna, N.N., Laird, J.R., Sanagala, S.S., Singh, R., Garg, D., Fouda, M.M. and Suri, J.S. 10.1007/s10462-024-10873-5 (2024). Blockchain, artificial intelligence, and healthcare: the tripod of future—a narrative review. The Artificial Intelligence Review, 57(9);238. https://doi.org/10.1007/s10462-024-10873-5 10.3390/electronics13040687 Bobde, Y., narayanan, g., jati, m., raja soosaimarian, p.r., cvitić, i. and peraković, D. (2024). Enhancing Industrial IoT Network Security through Blockchain Integration. Electronics, 13(4);687. https://doi.org/10.3390/electronics13040687 10.1007/s42452-023-05525-2 Bose, R., sutradhar, s., bhattacharyya, d. and roy, S. (2023). Trustworthy Healthcare Cloud Storage Auditing Scheme (TCSHAS) with blockchain-based incentive mechanism. SN Applied Sciences, 5(12);334. https://doi.org/10.1007/s42452-023-05525-2 10.1186/s12911-024-02551-x Burke, w., stranieri, a., oseni, t. and gondal, I. (2024). The need for cybersecurity self-evaluation in healthcare. BMC Medical Informatics and Decision Making, 24;1-15. DOI: 10.1186/s12911-024-02551-x 10.3390/bdcc8030026 Calzada, I. (2024). Democratic Erosion of Data-Opolies: Decentralized Web3 Technological Paradigm Shift Amidst AI Disruption. Big Data and Cognitive Computing, 8(3);26. https://doi.org/10.3390/bdcc8030026 10.3390/fi16070226 Cunha, J., ferreira, p., castro, e.m., oliveira, p.c., maria joão nicolau, núñez, i., xosé, r.s. and serôdio, C. (2024). Enhancing Network Slicing Security: Machine Learning, Software-Defined Networking, and Network Functions Virtualization-Driven Strategies. Future Internet, 16(7);226. https://doi.org/10.3390/fi16070226 10.3390/fi16010033 Daousis, S., peladarinos, n., cheimaras, v., papageorgas, p., piromalis, d.d. and munteanu, R.A. (2024). Overview of Protocols and Standards for Wireless Sensor Networks in Critical Infrastructures. Future Internet, 16(1);33. https://doi.org/10.3390/fi16010033 10.3390/iot5010002 Eghmazi, A., ataei, m., landry, r.,jr and chevrette, G. (2024). Enhancing IoT Data Security: Using the Blockchain to Boost Data Integrity and Privacy. IoT, 5(1);20. DOI:10.3390/iot5010002 10.3390/electronics13101894 Elisha Elikem, K.S., anggraini, l., kumi, j.a., luna, b.k., akansah, e., hafeez, a.s., mendonça, i. and aritsugi, M. (2024). IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics, 13(10);1894. DOI:10.3390/electronics13101894 10.3390/electronics12224604 Fakhouri, H.N., alawadi, s., awaysheh, f.m., imad, b.h., alkhalaileh, m. and hamad, f. (2023). A Comprehensive Study on the Role of Machine Learning in 5G Security: Challenges, Technologies, and Solutions. Electronics, 12(22);4604. https://doi.org/10.3390/electronics12224604 10.18280/isi.280604 Gadde, S., rao, g.s., venkata, s.v., yarlagadda, m. and lakshmi patibandla, R.S.M. (2023). Secure Data Sharing in Cloud Computing: A Comprehensive Survey of Two-Factor Authentication and Cryptographic Solutions. Ingenierie des Systemes d'Information, 28(6);1467-1477. DOI:10.18280/isi.280604 10.3390/su16020698 Gallegos, J., arévalo, p., montaleza, c. and jurado, F. (2024). Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review. Sustainability, 16(2);698. https://doi.org/10.3390/su16020698 10.3390/designs8010010 Hu, H., Yu, S.S. and Trinh, H. (2024). A Review of Uncertainties in Power Systems—Modeling, Impact, and Mitigation. Designs, 8(1);10. DOI:10.3390/designs8010010 10.2196/44578 Huan-Wei, L., Yuan-chia, c. and han, T. (2023). Fortifying Health Care Intellectual Property Transactions With Blockchain. Journal of Medical Internet Research, 25(1); e44578. doi: 10.2196/44578. 10.3390/s23218749 Hussam, S.M., krichen, m., adem, a.a. and ammi, M. (2023). Survey on Blockchain-Based Data Storage Security for Android Mobile Applications. Sensors, 23(21);8749. doi: 10.3390/s23218749. 10.3390/pr12050921 Iuon-chang, L., Pai-ching tseng, chen, p. and chiou, S. (2024). Enhancing Data Preservation and Security in Industrial Control Systems through Integrated IOTA Implementation. Processes, 12(5);921. https://doi.org/10.3390/pr12050921 10.1016/j.abst.2024.08.001 Javaid, M., haleem, a., singh, r.p. and gupta, S. (2024). Leveraging lean 4.0 technologies in healthcare: An exploration of its applications. Advances in Biomarker Sciences and Technology, 6;138-151. https://doi.org/10.1016/j.abst.2024.08.001 Khokhar, R.H., rankothge, w., rashidi, l., mohammadian, h., ghorbani, a., frei, b., ellis, s. and freitas, I. (2024). A Survey on Supply Chain Management: Exploring Physical and Cyber Security Challenges, Threats, Critical Applications, and Innovative Technologies. International Journal of Supply and Operations Management, 11(3);250-283. DOI: 10.22034/IJSOM.2024.110219.2975 10.30953/bhty.v6.276 Kormiltsyn, A., dwivedi, v., udokwu, c., norta, a. and nisar, S. (2023). Privacy-Conflict Resolution for Integrating Personal- and Electronic Health Records in Blockchain-Based Systems. Blockchain in Healthcare Today, 6(2) doi: 10.30953/bhty.v6.276. 10.3390/s24103111 Love Allen, c.a., nwakanma, c.i. and dong-seong, k. (2024). Tides of Blockchain in IoT Cybersecurity. Sensors, 24(10);3111. doi: 10.3390/s24103111. 10.3390/jsan13020020 Machele, I.L., onumanyi, a.j., abu-mahfouz, a. and kurien, A.M. (2024). Interconnected Smart Transactive Microgrids—A Survey on Trading, Energy Management Systems, and Optimisation Approaches. Journal of Sensor and Actuator Networks, 13(2);20. DOI:10.3390/jsan13020020 10.22399/ijcesen.417 Alkhatib, A., Albdor , L., Fayyad, S., & Ali, H. (2024). Blockchain-Enhanced Multi-Factor Authentication for Securing IoT Children’s Toys: Securing IoT Children’s Toys. International Journal of Computational and Experimental Science and Engineering, 10(4);1041-1049. https://doi.org/10.22399/ijcesen.417 10.22399/ijcesen.535 P., V., & A., M. R. (2024). A Scalable, Secure, and Efficient Framework for Sharing Electronic Health Records Using Permissioned Blockchain Technology. International Journal of Computational and Experimental Science and Engineering, 10(4);827-834. https://doi.org/10.22399/ijcesen.535 10.22399/ijcesen.539 Prasada, P., & Prasad, D. S. (2024). Blockchain-Enhanced Machine Learning for Robust Detection of APT Injection Attacks in the Cyber-Physical Systems. International Journal of Computational and Experimental Science and Engineering, 10(4);799-810. https://doi.org/10.22399/ijcesen.539 10.22399/ijcesen.565 Suneetha Madduluri, & T. Kishorekumar. (2024). Multimodal Biometric Authentication System for Military Weapon Access: Face and ECG Authentication. International Journal of Computational and Experimental Science and Engineering, 10(4);952-561. https://doi.org/10.22399/ijcesen.565 10.22399/ijcesen.491 C, A., K, S., N, N. S., & S, P. (2024). Secured Cyber-Internet Security in Intrusion Detection with Machine Learning Techniques. International Journal of Computational and Experimental Science and Engineering, 10(4);663-670. https://doi.org/10.22399/ijcesen.491 10.22399/ijcesen.538 Godavarthi, S., & G., D. V. R. (2024). Federated Learning’s Dynamic Defense Against Byzantine Attacks: Integrating SIFT-Wavelet and Differential Privacy for Byzantine Grade Levels Detection. International Journal of Computational and Experimental Science and Engineering, 10(4);775-786. https://doi.org/10.22399/ijcesen.538 10.22399/ijcesen.490 S, P., & A, P. (2024). Secured Fog-Body-Torrent : A Hybrid Symmetric Cryptography with Multi-layer Feed Forward Networks Tuned Chaotic Maps for Physiological Data Transmission in Fog-BAN Environment. International Journal of Computational and Experimental Science and Engineering, 10(4);671-681. https://doi.org/10.22399/ijcesen.490 10.22399/ijcesen.494 R, U. M., P, R. S., Gokul Chandrasekaran, & K, M. (2024). Assessment of Cybersecurity Risks in Digital Twin Deployments in Smart Cities. International Journal of Computational and Experimental Science and Engineering, 10(4);695-700. https://doi.org/10.22399/ijcesen.494 10.22399/ijcesen.469 Guven, M. (2024). A Comprehensive Review of Large Language Models in Cyber Security. International Journal of Computational and Experimental Science and Engineering, 10(3);507-516. https://doi.org/10.22399/ijcesen.469 10.22399/ijcesen.460 Guven, mesut. (2024). Dynamic Malware Analysis Using a Sandbox Environment, Network Traffic Logs, and Artificial Intelligence. International Journal of Computational and Experimental Science and Engineering, 10(3);480-490. https://doi.org/10.22399/ijcesen.460
Item Type: | Article |
---|---|
Subjects: | Computer Science Engineering > Artificial Intelligence |
Domains: | Computer Science |
Depositing User: | Mr IR Admin |
Date Deposited: | 22 Aug 2025 07:28 |
Last Modified: | 22 Aug 2025 07:28 |
URI: | https://ir.vistas.ac.in/id/eprint/10563 |