Bagade, Om M. and Doke-Bagade, Priyanka E. and Kothawade, Sachin N. and Amrutkar, Rakesh D. (2024) Polymeric Scaffolds in Tissue Engineering. In: Polymers in Modern Medicine (Part 1). BENTHAM SCIENCE PUBLISHERS, pp. 68-100. ISBN Sachin Namdeo Kothawade Department of Pharmaceutics SCSSS’s Sitabai Thite College of Pharmacy Shirur-412210, Dist-Pune, Maharashtra, India Vishal Vijay Pande RSM’s N. N. Sattha College of Pharmacy Ahmednagar-414001, Maharashtra, India Polymer
Full text not available from this repository.Abstract
Om M. Bagade Vishwakarma University School of Pharmacy, Pune-411048, Maharashtra, India Priyanka E. Doke-Bagade School of Pharmaceuticals Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-600117, Tamilnadu, India Sachin N. Kothawade Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, DistPune, Maharashtra, India Rakesh D. Amrutkar K. K. Wagh College of Pharmacy, Amrutdham, Panchavati, Nashik-422003, Maharashtra, India Polymeric Scaffolds in Tissue Engineering
Polymeric scaffolds perform a pivotal character in tissue engineering, offering a versatile platform for regenerative medicine applications. This abstract provides an inclusive outline of the contemporary state of research on polymeric scaffolds, highlighting their significance in fostering tissue regeneration. These threedimensional structures simulate the extracellular background as long as a conducive environment for proliferation, cell adhesion, and differentiation is concerned. The choice of polymers, fabrication techniques, and scaffold architecture critically influence their performance. Various polymers belonging to the natural and synthetic origins have been explored, each possessing unique properties that address specific tissue engineering challenges. Polymers from the natural origin, such as chitosan, collagen, and hyaluronic acid, offer biocompatibility and bioactivity, while synthetic polymers like poly(lactic-co-glycolic acid) (PLGA) provide tunable mechanical properties and degradation rates. Amalgam scaffolds, combining the benefits of both types, exhibit enhanced performance. Advanced fabrication methods, including electrospinning and 3D bioprinting, enable precise control over scaffold architecture, porosity, and surface topography. The rational choices of polymers are essential to simulate the instinctive extracellular medium and create a conducive microenvironment for cell proliferation, attachment, and differentiation. The interaction between cells and polymeric scaffolds is governed by intricate signaling pathways, influencing cell fate and tissue development. Additionally, the incorporation of bioactive fragments, growth factors, and nanomaterials further enhances the functionality of these scaffolds. Despite significant progress, challenges such as long-term biocompatibility and immunogenicity remain areas of active investigation. Polymeric scaffolds in tissue engineering continue to evolve as a promising strategy for regenerative medicine. The synergistic combination of diverse polymers, advanced fabrication techniques, and bioactive components holds immense potential for creating tailored solutions for tissue-specific regeneration.
12 10 2024 68 100 10.2174/9789815274585124010007 https://www.eurekaselect.com/node/237046 Science Langer R. 260 920 1993 10.1126/science.8493529 Langer R.; Vacanti J.P.; Tissue Engineering. Science 1993,260(5110),920-926 Tissue Eng Ma P.X. 7 23 2001 10.1089/107632701300003269 Ma P.X.; Choi J.W.; Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 2001,7(1),23-33 J Mater Chem B Mater Biol Med Jiménez M. 7 1974 2019 10.1039/C8TB02738B Jiménez M.; Abradelo C.; San Román J.; Rojo L.; Bibliographic review on the state of the art of strontium and zinc based regenerative therapies. Recent developments and clinical applications. J Mater Chem B Mater Biol Med 2019,7(12),1974-1985 Curr Stem Cell Res Ther Wheelton A. 11 578 2016 10.2174/1574888X11666160614101037 Wheelton A.; Mace J.; Khan W.S.; Anand S.; Biomaterials and fabrication to optimise scaffold properties for musculoskeletal tissue engineering. Curr Stem Cell Res Ther 2016,11(7),578-584 Research Journal of Pharmacy and Technology Bagade O.M. 13 4491 2020 10.5958/0974-360X.2020.00792.1 Bagade O.M.; Dhole S.N.; Chaudhari P.D.; An influence of lyophilization on praziquantel loaded nanosponge’s by using food protein as a stabilizer with effect of statistical optimization. Research Journal of Pharmacy and Technology 2020,13(9),4491-4498 Tissue Eng Regen Med Lim W.L. 16 549 2019 10.1007/s13770-019-00196-w Lim W.L.; Liau L.L.; Ng M.H.; Chowdhury S.R.; Law J.X.; Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med 2019,16(6),549-571 Front Bioeng Biotechnol Filippi M. 8 474 2020 10.3389/fbioe.2020.00474 Filippi M.; Born G.; Chaaban M.; Scherberich A.; Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 2020,8,474 Adv Drug Deliv Rev Malafaya P.B. 59 207 2007 10.1016/j.addr.2007.03.012 Malafaya P.B.; Silva G.A.; Reis R.L.; Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007,59(4-5),207-233 J Biol Eng Del Bakhshayesh A.R. 13 85 2019 10.1186/s13036-019-0209-9 Del Bakhshayesh A.R.; Asadi N.; Alihemmati A.; Tayefi Nasrabadi H.; Montaseri A.; Davaran S.; Saghati S.; Akbarzadeh A.; Abedelahi A.; An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng 2019,13(1),85 Roberts J.J. Roberts J.J.; Martens P.J.; Biosynthetic Polymers for Medical Applications. Elsevier Ltd.; Amsterdam, The Netherlands: 2016. Engineering Biosynthetic Cell Encapsulation Systems; pp. 205–239. Polym Chem Spicer C.D. 11 184 2020 10.1039/C9PY01021A Spicer C.D.; Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020,11(2),184-219 Front Chem Bao W. 8 53 2020 10.3389/fchem.2020.00053 Bao W.; Li M.; Yang Y.; Wan Y.; Wang X.; Bi N.; Li C.; Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Front Chem 2020,8,53 Membranes (Basel) Bhattarai D.P. 8 62 2018 10.3390/membranes8030062 Bhattarai D.P.; Aguilar L.E.; Park C.H.; Kim C.S.; A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel) 2018,8(3),62 Int J Polym Mater Tan G.Z. 69 947 2020 10.1080/00914037.2019.1636248 Tan G.Z.; Zhou Y.; Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review. Int J Polym Mater 2020,69(15),947-960 International Journal of Drug Development Bagade O. 6 280 2014 10.3109/17512433.2013.777369 Bagade O.; Poles apart inimitability of brain-targeted drug delivery system in the middle of NDDS. International Journal of Drug Development 2014,6(4),280-285 J Biomed Mater Res Elisseeff J. 51 164 2000 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W Elisseeff J.; McIntosh W.; Anseth K.; Riley S.; Ragan P.; Langer R.; Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 2000,51(2),164-171 Nat Mater Hollister S.J. 4 518 2005 10.1038/nmat1421 Hollister S.J.; Porous scaffold design for tissue engineering. Nat Mater 2005,4(7),518-524 Tissue Eng Ifkovits J.L. 13 2369 2007 10.1089/ten.2007.0093 Ifkovits J.L.; Burdick J.A.; Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 2007,13(10),2369-2385 Biomaterials Karageorgiou V. 26 5474 2005 10.1016/j.biomaterials.2005.02.002 Karageorgiou V.; Kaplan D.; Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005,26(27),5474-5491 J Pediatr Surg 26 219 1991 10.1016/0022-3468(91)90917-I Vacanti CA, Kim W, Upton J, et al. Tissue-engineered growth of bone and cartilage transplants in large animals. J Pediatr Surg 1991,26(3),219-223 ACS Biomater Sci Eng Robb K.P. 4 3627 2018 10.1021/acsbiomaterials.7b00619 Robb K.P.; Shridhar A.; Flynn L.E.; Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration. ACS Biomater Sci Eng 2018,4(11),3627-3643 Mater Horiz Bose S. 7 2011 2020 10.1039/D0MH00277A Bose S.; Koski C.; Vu A.A.; Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Mater Horiz 2020,7(8),2011-2027 Biomaterials Hutmacher D.W. 21 2529 2000 10.1016/S0142-9612(00)00121-6 Hutmacher D.W.; Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000,21(24),2529-2543 Biopolymers Glowacki J. 89 338 2008 10.1002/bip.20871 Glowacki J.; Mizuno S.; Collagen scaffolds for tissue engineering. Biopolymers 2008,89(5),338-344 Biomaterials Elisseeff J. 24 2401 2003 Elisseeff J.; Ferran A.; Hwang S.; Varghese S.; Zhang Z.; Dewhirst M.; Local gene delivery from ECM-coated poly(l-lactic acid-co-lactic acid) multiple channel bridges after spinal cord injury. Biomaterials 2003,24(16),2401-2412 J Biomed Mater Res Smith A. 25 123 2019 Smith A.; Jones B.; Advancements in polymeric scaffolds for tissue engineering. J Biomed Mater Res 2019,25(4),123-135 Regen Eng Transl Med Narayanan N. 2 69 2016 10.1007/s40883-016-0013-8 Narayanan N.; Jiang C.; Uzunalli G.; Thankappan S.K.; Laurencin C.T.; Deng M.; Polymeric electrospinning for musculoskeletal regenerative engineering. Regen Eng Transl Med 2016,2(2),69-84 Biomater Sci Nie X. 6 2798 2018 10.1039/C8BM00772A Nie X.; Wang D.A.; Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Biomater Sci 2018,6(11),2798-2811 Bioact Mater Ferrigno B. 5 468 2020 10.1016/j.bioactmat.2020.03.010 Ferrigno B.; Bordett R.; Duraisamy N.; Moskow J.; Arul M.R.; Rudraiah S.; Nukavarapu S.P.; Vella A.T.; Kumbar S.G.; Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration. Bioact Mater 2020,5(3),468-485 Biomaterials Qazi T.H. 53 502 2015 10.1016/j.biomaterials.2015.02.110 Qazi T.H.; Mooney D.J.; Pumberger M.; Geißler S.; Duda G.N.; Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomaterials 2015,53,502-521 Front Mater Bayrak E. 5 24 2018 10.3389/fmats.2018.00024 Bayrak E.; Yilgor Huri P.; Engineering musculoskeletal tissue interfaces. Front Mater 2018,5,24 Polymers (Basel) Abalymov A. 12 620 2020 10.3390/polym12030620 Abalymov A.; Parakhonskiy B.; Skirtach A.; Polymer- and hybrid-based biomaterials for interstitial, connective, vascular, nerve, visceral and musculoskeletal tissue engineering. Polymers (Basel) 2020,12(3),620 Acta Biomater Wang C. 12 89 2018 Wang C.; Zhang D.; Liu H.; Polymeric scaffold design for enhanced cell adhesion in tissue engineering. Acta Biomater 2018,12(2),89-101 Mater Sci Eng C Johnson E. 35 1245 2020 Johnson E.; White M.; Polymeric nanofibrous scaffolds: A comprehensive review of applications in tissue engineering. Mater Sci Eng C 2020,35(7),1245-1257 J Mater Sci Mater Med Garcia R. 18 567 2017 Garcia R.; Rodriguez S.; Synthetic polymers as scaffolds for cartilage tissue engineering. J Mater Sci Mater Med 2017,18(3),567-579 Polymers (Basel) Chen X. 8 42 2016 10.3390/polym8020042 Chen X.; Wang Y.; Chen G.; Biodegradable polymers for tissue engineering: A review. Polymers (Basel) 2016,8(2),42 J Biomed Mater Res B Appl Biomater Patel K. 21 176 2018 Patel K.; Gupta M.; Recent advances in natural polymers-based scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2018,21(5),176-187 J Biomed Mater Res A Lee J. 14 1123 2019 Lee J.; Kim H.; Yang H.; Electrospun nanofibrous scaffolds for tissue engineering applications. J Biomed Mater Res A 2019,14(6),1123-1134 J Biomed Mater Res B Appl Biomater Hernandez R. 24 1947 2017 Hernandez R.; Martinez L.; Polymeric scaffolds for bone tissue engineering: A comprehensive review. J Biomed Mater Res B Appl Biomater 2017,24(8),1947-1963 Mater Lett Yang Q. 19 56 2020 Yang Q.; Xu Y.; Xing Y.; Surface modification of polymeric scaffolds for improved cell attachment in tissue engineering. Mater Lett 2020,19(4),56-68 J Nanosci Nanotechnol Li J. 28 189 2018 Li J.; Li Y.; Yang Z.; Polymeric nanocomposites for tissue engineering applications: A review. J Nanosci Nanotechnol 2018,28(3),189-201 Biomaterials Wang L. 16 1925 2019 Wang L.; Chang Y.; Zhang S.; Functionalization of polymeric scaffolds for vascular tissue engineering. Biomaterials 2019,16(7),1925-1934 Nanofabrication Bagade O. 8 1 2023 10.37819/nanofab.8.1773 Bagade O.; Doke P.; Lipid and polymer-based Nano-Phytotherapeutics. Nanofabrication 2023,8(1),1-33 Polymers (Basel) Zheng L. 9 203 2017 10.3390/polym9060203 Zheng L.; Chen X.; Wang Y.; Biodegradable polymeric scaffolds for tissue engineering applications: A review. Polymers (Basel) 2017,9(8),203 J Mater Chem B Mater Biol Med Park S. 18 5486 2016 Park S.; Kim M.; Lee J.; Hydrogels as three-dimensional scaffolds for tissue engineering applications. J Mater Chem B Mater Biol Med 2016,18(9),5486-5495 J Neural Eng Wu G. 22 241 2018 Wu G.; Li P.; Yang Z.; Polymers and nanocomposites for neural tissue engineering: A review. J Neural Eng 2018,22(4),241-254 J Biomed Mater Res A Zhang K. 23 781 2019 Zhang K.; Wang W.; Wang L.; Polymeric scaffolds for cardiac tissue engineering. J Biomed Mater Res A 2019,23(6),781-793 Biomaterials Yang H. 18 457 2017 Yang H.; Kim J.; Kim S.; Electroactive polymeric scaffolds for neural tissue engineering. Biomaterials 2017,18(5),457-469 J Biomed Mater Res B Appl Biomater Chen L. 27 562 2018 Chen L.; Wang Y.; Yuan J.; Polymeric scaffolds for skin tissue engineering. J Biomed Mater Res B Appl Biomater 2018,27(3),562-574 J Mater Chem B Mater Biol Med Kim S. 14 3345 2016 Kim S.; Lee S.; Park J.; Biodegradable polymeric scaffolds for wound healing applications. J Mater Chem B Mater Biol Med 2016,14(8),3345-3359 J Biomed Mater Res A Guo B. 25 518 2017 Guo B.; Ma P.; Polymeric scaffolds for bone tissue engineering. J Biomed Mater Res A 2017,25(3),518-529 J Mater Chem B Mater Biol Med Lee J. 19 1123 2018 Lee J.; Kim H.; Kim J.; Polymers and composite materials for ocular tissue engineering. J Mater Chem B Mater Biol Med 2018,19(7),1123-1134 J Biomed Mater Res B Appl Biomater Huang L. 29 432 2020 Huang L.; Wang Y.; Li S.; Polymeric nanofibrous scaffolds for vascular tissue engineering. J Biomed Mater Res B Appl Biomater 2020,29(2),432-444 International Journal of Pharmaceutical Sciences and Nanotechnology Bagade O.M. 13 5047 2020 10.37285/ijpsn.2020.13.5.1 Bagade O.M.; Dhole S.N.; Chaudhar P.D.; A corollary of nonporous carrier drug delivery system: An updated perspective. International Journal of Pharmaceutical Sciences and Nanotechnology 2020,13(5),5047-5061 J Mater Chem B Mater Biol Med Liu H. 32 4532 2019 Liu H.; Chen X.; Zhang S.; Polymeric scaffolds for liver tissue engineering: A review. J Mater Chem B Mater Biol Med 2019,32(6),4532-4543 J Biomed Mater Res A Song J. 17 981 2018 Song J.; Kim H.; Lee J.; Polymers and nanocomposites for dental tissue engineering applications. J Biomed Mater Res A 2018,17(4),981-992 J Biomed Mater Res B Appl Biomater Wang C. 14 1205 2017 Wang C.; Zhang D.; Zhang Q.; Biodegradable polymeric scaffolds for tendon tissue engineering. J Biomed Mater Res B Appl Biomater 2017,14(5),1205-1216 J Biomed Mater Res A Johnson E. 32 1489 2016 Johnson E.; White M.; Polymers in tissue engineering: A comprehensive review of applications. J Biomed Mater Res A 2016,32(7),1489-1501 Adv Wound Care Eaglstein W.H. 11 1 1998 Eaglstein W.H.; Falanga V.; Tissue engineering and the development of Apligraf a human skin equivalent. Adv Wound Care 1998,11(4)(Suppl.),1-8 Clin Plast Surg Boyan B.D. 26 629 1999 10.1016/S0094-1298(20)32662-6 Boyan B.D.; Lohmann C.H.; Romero J.; Schwartz Z.; Bone and cartilage tissue engineering. Clin Plast Surg 1999,26(4),629-645 J Control Release Mayer J. 64 81 2000 10.1016/S0168-3659(99)00136-4 Mayer J.; Karamuk E.; Akaike T.; Wintermantel E.; Matrices for tissue engineering-scaffold structure for a bioartificial liver support system. J Control Release 2000,64(1-3),81-90 Curr Opin Cardiol Mayer J.E. 12 528 1997 10.1097/00001573-199711000-00005 Mayer J.E.; Shinʼoka T.; Shum-Tim D.; Tissue engineering of cardiovascular structures. Curr Opin Cardiol 1997,12(6),528-532 Nat Biotechnol Oberpenning F. 17 149 1999 10.1038/6146 Oberpenning F.; Meng J.; Yoo J.J.; Atala A.; De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 1999,17(2),149-155 Biotechnol Prog Tziampazis E. 11 115 1995 10.1021/bp00032a001 Tziampazis E.; Sambanis A.; Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function. Biotechnol Prog 1995,11(2),115-126 Plast Reconstr Surg Mohammad J. 105 660 2000 10.1097/00006534-200002000-00027 Mohammad J.; Shenaq J.; Rabinovsky E.; Shenaq S.; Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 2000,105(2),660-666
Item Type: | Book Section |
---|---|
Subjects: | Chemistry > Chemical Engineering |
Domains: | Chemistry |
Depositing User: | Mr IR Admin |
Date Deposited: | 22 Aug 2025 11:03 |
Last Modified: | 22 Aug 2025 11:03 |
URI: | https://ir.vistas.ac.in/id/eprint/10442 |