Hanisha, R. and Balaganapathy, M. and Eswar, B. and Kathirvelan, P. and Rajabathar, Jothi Ramalingam and Siddiqui, Nadeem and Dinakarkumar, Yuvaraj (2024) Biogenic synthesis of silver nanoparticles using Spirulina maxima extract and their bactericidal activity. Journal of Umm Al-Qura University for Applied Sciences. ISSN 2731-6734
![[thumbnail of s43994-024-00203-4.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
s43994-024-00203-4.pdf
Download (1MB)
Abstract
Biogenic synthesis of silver nanoparticles using Spirulina maxima extract and their bactericidal activity R. Hanisha M. Balaganapathy B. Eswar P. Kathirvelan Jothi Ramalingam Rajabathar Nadeem Siddiqui Yuvaraj Dinakarkumar http://orcid.org/0000-0001-7579-4157 Abstract
This study reports a biogenic synthesis protocol for silver nanoparticles (AgNPs) utilizing Spirulina maxima extract as a natural reducing agent, offering an economically viable and environmentally sustainable approach. The biosynthesis pathway eliminates conventional chemical reagents while maximizing process sustainability. Comprehensive characterization of the synthesized nanostructures was performed using UV-spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. FTIR spectroscopic studies revealed the role of proteinaceous compounds and biomolecules in AgNP formation and stabilization. The biosynthesized AgNPs demonstrated notable antimicrobial efficacy against two pathogenic bacteria: Enterococcus faecalis and Staphylococcus aureus , producing inhibition zones of 3.2 and 2.5 mm, respectively. This investigation establishes Spirulina maxima -mediated synthesis as an efficient and cost-effective route for producing antimicrobial silver nanostructures, advancing sustainable nanomaterial production methodologies.
Graphical Abstract
12 11 2024 203 1 10.1007/springer_crossmark_policy link.springer.com false 11 April 2024 6 November 2024 11 December 2024 The authors declare no known competing interest. King Saud University http://dx.doi.org/10.13039/501100002383 RSP2023R354 https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 10.1007/s43994-024-00203-4 20241211110232629 https://link.springer.com/10.1007/s43994-024-00203-4 https://link.springer.com/content/pdf/10.1007/s43994-024-00203-4.pdf https://link.springer.com/content/pdf/10.1007/s43994-024-00203-4.pdf https://link.springer.com/article/10.1007/s43994-024-00203-4/fulltext.html Anal Chem K Gao 94 50 17634 2022 10.1021/acs.analchem.2c04382 Gao K, Lian H, Xue C, Zhou J, Yan X (2022) High-throughput counting and sizing of therapeutic protein aggregates in the nanometer size range by nano-flow cytometry. Anal Chem 94(50):17634–17644. https://doi.org/10.1021/acs.analchem.2c04382 Mater Adv N Baig 2 6 1821 2021 10.1039/D0MA00807A Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2(6):1821–1871. https://doi.org/10.1039/D0MA00807A S Sonkaria 89 2019 Nano-sized multifunctional materials 10.1016/B978-0-12-813934-9.00005-0 Sonkaria S, Khare V (2019) Conceptualization of self-assembled nanobiomimicry at the intersection of biology and material science: new routes to smarter quantum-scale materials. Nano-sized multifunctional materials. Elsevier, Amsterdam, pp 89–115 Acc Chem Res H Zhang 46 8 1783 2013 10.1021/ar300209w Zhang H, Jin M, Xiong Y, Lim B, Xia Y (2013) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46(8):1783–1794. https://doi.org/10.1021/ar300209w Chem Mater Y Ding 13 2 435 2001 10.1021/cm000607e Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater 13(2):435–440. https://doi.org/10.1021/cm000607e J Appl Polym Sci SB Aziz 2017 10.1002/app.44847 Aziz SB, Abdullah OG, Rasheed MA (2017) A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J Appl Polym Sci. https://doi.org/10.1002/app.44847 Acc Chem Res PT Anastas 35 9 686 2002 10.1021/ar010065m Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35(9):686–694. https://doi.org/10.1021/ar010065m Ceram Int H Mirzaei 43 1 907 2017 10.1016/j.ceramint.2016.10.051 Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914. https://doi.org/10.1016/j.ceramint.2016.10.051 Environ Sci Pollut Res Z Zahoor 29 54 82365 2022 10.1007/s11356-022-21545-8 Zahoor Z, Latif MI, Khan I, Hou F (2022) Abundance of natural resources and environmental sustainability: the roles of manufacturing value-added, urbanization, and permanent cropland. Environ Sci Pollut Res 29(54):82365–82378. https://doi.org/10.1007/s11356-022-21545-8 Nano Today V Palmieri 37 2021 10.1016/j.nantod.2021.101077 Palmieri V, De Maio F, De Spirito M, Papi M (2021) Face masks and nanotechnology: keep the blue side up. Nano Today 37:101077. https://doi.org/10.1016/j.nantod.2021.101077 Bioconjug Chem WR Algar 22 5 825 2011 10.1021/bc200065z Algar WR et al (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22(5):825–858. https://doi.org/10.1021/bc200065z Coord Chem Rev P Dutta 383 1 2019 10.1016/j.ccr.2018.12.014 Dutta P, Wang B (2019) Zeolite-supported silver as antimicrobial agents. Coord Chem Rev 383:1–29. https://doi.org/10.1016/j.ccr.2018.12.014 J Nanobiotechnol HH Lara 9 1 30 2011 10.1186/1477-3155-9-30 Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9(1):30. https://doi.org/10.1186/1477-3155-9-30 J Food Sci Technol PK Singh 53 4 1739 2016 10.1007/s13197-015-2090-y Singh PK, Jairath G, Ahlawat SS (2016) Nanotechnology: a future tool to improve quality and safety in meat industry. J Food Sci Technol 53(4):1739–1749. https://doi.org/10.1007/s13197-015-2090-y J Occup Med Toxicol SS Suri 2 1 16 2007 10.1186/1745-6673-2-16 Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2(1):16. https://doi.org/10.1186/1745-6673-2-16 Microb Biosyst R Devi 5 1 21 2020 10.21608/mb.2020.32802.1016 Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5(1):21–47. https://doi.org/10.21608/mb.2020.32802.1016 Int J Res Eng Sci S Chandra 10 6 19 2022 Chandra S, Sodiyal N, Patil S (2022) A review on herbal gel face wash with scrub. Int J Res Eng Sci 10(6):19–30 Front Microbiol TC Dakal 2016 10.3389/fmicb.2016.01831 Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01831 Bioresour Bioprocess CL Keat 2 1 47 2015 10.1186/s40643-015-0076-2 Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2(1):47. https://doi.org/10.1186/s40643-015-0076-2 Polym Adv Technol M Choudhury 33 7 1997 2022 10.1002/pat.5660 Choudhury M, Bindra HS, Singh K, Singh AK, Nayak R (2022) Antimicrobial polymeric composites in consumer goods and healthcare sector: a healthier way to prevent infection. Polym Adv Technol 33(7):1997–2024. https://doi.org/10.1002/pat.5660 10.5772/intechopen.99173 Galatage ST et al (2021) Silver nanoparticles: properties, synthesis, characterization, applications and future trends. In: Silver micro-nanoparticles-properties, synthesis, characterization, and applications. IntechOpen, London Biocatal Agric Biotechnol H Chandra 24 2020 10.1016/j.bcab.2020.101518 Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518. https://doi.org/10.1016/j.bcab.2020.101518 Am J Appl Sci Res A Lashari 8 3 58 2022 10.11648/j.ajasr.20220803.14 Lashari A, Mona Hassan S, Sharif Mughal S (2022) Biosynthesis, characterization and biological applications of BaO nanoparticles using Linum usitatissimum. Am J Appl Sci Res 8(3):58–68. https://doi.org/10.11648/j.ajasr.20220803.14 Water (Basel) M Zahoor 13 16 2216 2021 10.3390/w13162216 Zahoor M et al (2021) A review on silver nanoparticles: classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water (Basel) 13(16):2216. https://doi.org/10.3390/w13162216 Sep Purif Technol E Guibal 38 1 43 2004 10.1016/j.seppur.2003.10.004 Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74. https://doi.org/10.1016/j.seppur.2003.10.004 Resour Conserv Recycl S Temizel-Sekeryan 156 2020 10.1016/j.resconrec.2019.104676 Temizel-Sekeryan S, Hicks AL (2020) Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resour Conserv Recycl 156:104676. https://doi.org/10.1016/j.resconrec.2019.104676 Int J Pharm Pharm Sci S Kouser Ali 4 3 9 2012 Kouser Ali S, Mohammed Saleh A (2012) Spirulina-an overview. Int J Pharm Pharm Sci 4(3):9–15 Nutrients D König 10 1 97 2018 10.3390/nu10010097 König D, Oesser S, Scharla S, Zdzieblik D, Gollhofer A (2018) Specific collagen peptides improve bone mineral density and bone markers in postmenopausal women—a randomized controlled study. Nutrients 10(1):97. https://doi.org/10.3390/nu10010097 Nutr J M-E Ngo-Matip 14 1 70 2015 10.1186/s12937-015-0058-4 Ngo-Matip M-E et al (2015) Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: a 12-months single blind, randomized, multicenter trial. Nutr J 14(1):70. https://doi.org/10.1186/s12937-015-0058-4 J Dairy Sci E Manzocchi 103 12 11349 2020 10.3168/jds.2020-18602 Manzocchi E, Guggenbühl B, Kreuzer M, Giller K (2020) Effects of the substitution of soybean meal by spirulina in a hay-based diet for dairy cows on milk composition and sensory perception. J Dairy Sci 103(12):11349–11362. https://doi.org/10.3168/jds.2020-18602 M Hashemian 393 2019 Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts 10.1016/B978-0-12-817941-3.00020-6 Hashemian M, Ahmadzadeh H, Hosseini M, Lyon S, Pourianfar HR (2019) Production of microalgae-derived high-protein biomass to enhance food for animal feedstock and human consumption. Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier, Amsterdam, pp 393–405 Crit Rev Food Sci Nutr RJ Marles 51 7 593 2011 10.1080/10408391003721719 Marles RJ et al (2011) United States pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr 51(7):593–604. https://doi.org/10.1080/10408391003721719 Plants NKZ AlFadhly 11 22 3063 2022 10.3390/plants11223063 AlFadhly NKZ, Alhelfi N, Altemimi AB, Verma DK, Cacciola F (2022) Tendencies affecting the growth and cultivation of genus spirulina: an investigative review on current trends. Plants 11(22):3063. https://doi.org/10.3390/plants11223063 Pavitra Krishna KU, Subapriya MS (2015) Formulation and acceptability of Spirulina incorporated health mix. [Online]. www.ijsar.in J Algal Biomass Utln I Priyadarshani 4 2229 2012 Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Utln 4:2229–6905 J Reboleira 409 2019 Nonvitamin and nonmineral nutritional supplements Reboleira J et al (2019) Spirulina. Nonvitamin and nonmineral nutritional supplements. Elsevier, Amsterdam, pp 409–413 Evid Based Complement Altern Med PD Karkos 2011 1 2011 10.1093/ecam/nen058 Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA (2011) Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Altern Med 2011:1–4. https://doi.org/10.1093/ecam/nen058 Food Res Int T Lafarga 137 2020 10.1016/j.foodres.2020.109356 Lafarga T, Fernández-Sevilla JM, González-López C, Acién-Fernández FG (2020) Spirulina for the food and functional food industries. Food Res Int 137:109356. https://doi.org/10.1016/j.foodres.2020.109356 Sci Iran M Mahdieh 19 3 926 2012 10.1016/j.scient.2012.01.010 Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran 19(3):926–929. https://doi.org/10.1016/j.scient.2012.01.010 Appl Nanosci J Annamalai 6 2 259 2016 10.1007/s13204-015-0426-6 Annamalai J, Nallamuthu T (2016) Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl Nanosci 6(2):259–265. https://doi.org/10.1007/s13204-015-0426-6 Nat Nanotechnol U Holzwarth 6 9 534 2011 10.1038/nnano.2011.145 Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation.’ Nat Nanotechnol 6(9):534–534. https://doi.org/10.1038/nnano.2011.145 D Titus 303 2019 Green synthesis, characterization and applications of nanoparticles 10.1016/B978-0-08-102579-6.00012-5 Titus D, Samuel EJJ, Roopan SM (2019) Nanoparticle characterization techniques. Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 303–319 Int J Enhanced Res Sci Technol Eng M Al-Katib 4 9 60 2015 10.15623/ijret.2015.0409010 Al-Katib M, Al-Shahri Y, Al-Niemi A (2015) Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. Int J Enhanced Res Sci Technol Eng 4(9):60–73 Environ Sci Pollut Res G Muthusamy 24 23 19459 2017 10.1007/s11356-017-9772-0 Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S (2017) Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ Sci Pollut Res 24(23):19459–19464. https://doi.org/10.1007/s11356-017-9772-0 J Mol Struct F Ameen 1217 2020 10.1016/j.molstruc.2020.128392 Ameen F, Abdullah MMS, Al-Homaidan AA, Al-Lohedan HA, Al-Ghanayem AA, Almansob A (2020) Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J Mol Struct 1217:128392. https://doi.org/10.1016/j.molstruc.2020.128392 Colloids Surf A A Bankar 368 1–3 58 2010 10.1016/j.colsurfa.2010.07.02 Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A 368(1–3):58–63. https://doi.org/10.1016/j.colsurfa.2010.07.02 Bioinorg Chem Appl AL Hanna 2022 10.1155/2022/9072508 Hanna AL, Hamouda HM, Goda HA, Sadik MW, Moghanm FS, Ghoneim AM, Alenezi MA, Alnomasy SF, Alam P, Elsayed TR (2022) Biosynthesis and characterization of silver nanoparticles produced by Phormidium ambiguum and Desertifilum tharense cyanobacteria. Bioinorg Chem Appl. https://doi.org/10.1155/2022/9072508 Microsc Res Techn N Feroze 83 1 72 2019 10.1002/jemt.23390 Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A (2019) Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Techn 83(1):72–80. https://doi.org/10.1002/jemt.23390 J Pharmaceut Sci Res EK Elumalai 2 9 549 2010 Elumalai EK, Prasad TN, Hemachandran J, ViviyanTherasa S, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharmaceut Sci Res 2(9):549–554 Appl Microbiol WL Drew 24 2 240 1972 10.1128/am.24.2.240-247.1972 Drew WL, Barry AL, O’Toole R, Sherris JC (1972) Reliability of the Kirby–Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl Microbiol 24(2):240–247. https://doi.org/10.1128/am.24.2.240-247.1972
Item Type: | Article |
---|---|
Subjects: | Biotechnology > Nanotechnology |
Domains: | Biotechnology |
Depositing User: | Mr IR Admin |
Date Deposited: | 23 Aug 2025 05:58 |
Last Modified: | 23 Aug 2025 05:58 |
URI: | https://ir.vistas.ac.in/id/eprint/10351 |