Kathirvel, M. and Chandrasekaran, M. (2025) Predictive Maintenance and Energy Optimization with AI-Driven IoT Framework in Textile Manufacturing Industry. International Journal of Computational and Experimental Science and Engineering, 11 (2). ISSN 2149-9144
![[thumbnail of final+1584.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png)
final+1584.pdf
Download (1MB)
Abstract
Predictive Maintenance and Energy Optimization with AI-Driven IoT Framework in Textile Manufacturing Industry Kathirvel M. Chandrasekaran M.
The textile industry is rapidly automating, yet frequent machine failures and excessive energy consumption continue to impede efficiency. Predictive analytics and AI-driven energy management are critical in overcoming these challenges. This study presents an Adaptive Deep Reinforcement Learning with Bayesian Optimization (ADRL-BO) model, integrating predictive maintenance with IoT-based energy control to enhance operational reliability. The framework aims to reduce unexpected equipment failures and optimize energy consumption using real-time AI analytics. Data is collected from major textile hubs in India, including Surat, Coimbatore, and Ludhiana, covering 500+ industrial machines. Key machine parameters, such as acoustic signals, thermal fluctuations, and vibrations, are monitored through IoT sensors. The ADRL-BO model utilizes deep reinforcement learning (DRL) for adaptive fault detection, while Bayesian optimization refines maintenance scheduling. Additionally, an IoT-driven smart grid dynamically manages power distribution, adjusting motor speeds and compressor loads based on real-time demand. Blockchain technology ensures secure, transparent data logging of energy usage. Ultra-fast 5G IoT communication supports seamless data exchange for real-time analytics. Evaluation results demonstrate a 45% reduction in downtime and 35% energy savings, validating ADRL-BO’s effectiveness over conventional AI methods in achieving a more sustainable and intelligent textile manufacturing ecosystem.
04 19 2025 https://creativecommons.org/licenses/by/4.0 10.22399/ijcesen.1584 https://www.ijcesen.com/index.php/ijcesen/article/view/1584 https://www.ijcesen.com/index.php/ijcesen/article/download/1584/696 https://www.ijcesen.com/index.php/ijcesen/article/download/1584/696 10.1016/j.jclepro.2016.11.098 Rakib, M. I., Saidur, R., Mohamad, E. N., & Afifi, A. M. (2017). Waste-heat utilization–the sustainable technologies to minimize energy consumption in Bangladesh textile sector. Journal of Cleaner Production, 142, 1867-1876. https://doi.org/10.1016/j.jclepro.2016.11.098 10.1016/j.egyr.2019.11.104 Jaitiang, T., Vorayos, N., Deethayat, T., & Vorayos, N. (2020). Energy conservation tracking of Thailand’s energy and GHG mitigation plan: A case of Thailand’s textile industry. Energy Reports, 6, 467-473. https://doi.org/10.1016/j.egyr.2019.11.104 Kimutai, I., Maina, P., & Makokha, A. (2019). Energy optimization model using linear programming for process industry: a case study of textile manufacturing plant in Kenya. International Journal of Energy Engineering, 9(2), 45-52. 10.1155/2022/5724825 Kousar, S., Shafqat, U., Kausar, N., Pamucar, D., Karaca, Y., & Salman, M. A. (2022). Sustainable energy consumption model for textile industry using fully intuitionistic fuzzy optimization approach. Computational Intelligence and Neuroscience, 2022, 5724825. https://doi.org/10.1155/2022/5724825 10.1016/j.rser.2012.03.029 Hasanbeigi, A., & Price, L. (2012). A review of energy use and energy efficiency technologies for the textile industry. Renewable and Sustainable Energy Reviews, 16(6), 3648-3665. https://doi.org/10.1016/j.rser.2012.03.029 10.3390/su14031551 Victorovna Morozova, T., Alayi, R., Grimaldo Guerrero, J. W., Sharifpur, M., & Ebazadeh, Y. (2022). Investigation and optimization of the performance of energy systems in the textile industry by using CHP systems. Sustainability, 14(3), 1551. https://doi.org/10.3390/su14031551 10.1080/00405167.2020.1763701 Manglani, H., Hodge, G. L., & Oxenham, W. (2019). Application of the internet of things in the textile industry. Textile Progress, 51(3), 225-297. https://doi.org/10.1080/00405167.2019.1617513 10.1016/j.matpr.2021.01.023 Ramaiah, G. B. (2021). Theoretical analysis on applications aspects of smart materials and Internet of Things (IoT) in textile technology. Materials Today: Proceedings, 45, 4633-4638. https://doi.org/10.1016/j.matpr.2020.11.719 10.1016/j.nanoen.2021.106035 Zhu, J., Cho, M., Li, Y., He, T., Ahn, J., Park, J., ... & Park, I. (2021). Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy, 86, 106035. https://doi.org/10.1016/j.nanoen.2021.106035 10.56614/eiprmj.v11i1.229 Rathore, B. (2022). Textile Industry 4.0 transformation for sustainable development: prediction in manufacturing & proposed hybrid sustainable practices. Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 11(1), 223-241. 10.1177/00405175241310632 Ingle, N., & Jasper, W. J. (2025). A review of the evolution and concepts of deep learning and AI in the textile industry. Textile Research Journal. https://doi.org/10.1177/00405175241310632 10.3390/app14135380 Petrillo, A., Rehman, M., & Baffo, I. (2024). Digital and Sustainable Transition in Textile Industry through Internet of Things Technologies: A Pakistani Case Study. Applied Sciences, 14(13), 5380. https://doi.org/10.3390/app14135380 10.1201/9781003388913-30 Mathew, D., & Brintha, N. C. (2023). Artificial Intelligence in the Field of Textile Industry: A Systematic Study on Machine Learning and Neural Network Approaches. In Recent Trends in Computational Intelligence and Its Application (pp. 222-228). CRC Press. 10.15406/jteft.2023.09.00355 Parachuru, R. (2023). A quick look at the recent advances, current state of utilization and expected future usage of artificial intelligence (AI) in the global textile manufacturing industry. Journal of Textile Engineering & Fashion Technology, 9(6), 190-194. Mim, T. I., Tasnim, F., Shamrat, B. A. R., & Xames, M. D. (2022). Performance prediction of green supply chain using Bayesian belief network: case study of a textile industry. International Journal of Research in Industrial Engineering, 11(4), 327-348. 10.1016/j.compind.2020.103373 He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Haiyi, C. (2020). A deep reinforcement learning based multi-criteria decision support system for textile manufacturing process optimization. arXiv preprint arXiv:2012.14794. 10.1109/CACS47674.2019.9024364 Taur, K. H., Deng, X. Y., Chou, M. H., Chen, J. W., Lee, Y. H., & Wang, W. J. (2019, November). A study on machine learning approaches for predicting and analyzing the drying process in the textile industry. In 2019 International Automatic Control Conference (CACS) (pp. 1-5). IEEE. https://doi.org/10.1109/CACS48788.2019.8996740 10.1007/978-3-031-03884-6_23 Medina, H., Peña, M., Siguenza-Guzman, L., & Guamán, R. (2021, October). Demand Forecasting for Textile Products Using Machine Learning Methods. In International Conference on Applied Technologies (pp. 301-315). Springer, Cham. https://doi.org/10.1007/978-3-030-85347-1_26 10.20469/ijtes.4.10004-2 Lee, C. Y., Lin, J. Y., & Chang, R. I. (2018). Improve quality and efficiency of textile process using data-driven machine learning in Industry 4.0. International Journal of Technology and Engineering Studies, 4(2), 4-10004. 10.22399/ijcesen.1669 A, V., & J Avanija. (2025). AI-Driven Heart Disease Prediction Using Machine Learning and Deep Learning Techniques. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1669 10.22399/ijcesen.782 P. Rathika, S. Yamunadevi, P. Ponni, V. Parthipan, & P. Anju. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.782 10.22399/ijasrar.18 Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.18 10.22399/ijcesen.606 Nuthakki, praveena, & Pavankumar T. (2024). Comparative Assessment of Machine Learning Algorithms for Effective Diabetes Prediction and Care. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.606 10.22399/ijasrar.19 Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.19 10.22399/ijcesen.1193 Duvvur, V. (2025). Modernizing Government IT Systems: A Case Study on Enhancing Operational Efficiency and Data Integrity. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1193 10.22399/ijcesen.780 J. Prakash, R. Swathiramya, G. Balambigai, R. Menaha, & J.S. Abhirami. (2024). AI-Driven Real-Time Feedback System for Enhanced Student Support: Leveraging Sentiment Analysis and Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.780 10.22399/ijasrar.20 Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.20 10.22399/ijcesen.1358 V. Saravanan, Tripathi, K., K. N. S. K. Santhosh, Naveenkumar P., P. Vidyasri, & Bharathi Ramesh Kumar. (2025). AI-Driven Cybersecurity: Enhancing Threat Detection and Mitigation with Deep Learning. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1358 10.22399/ijasrar.21 Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.21 10.22399/ijcesen.1165 G. Prabaharan, S. Vidhya, T. Chithrakumar, K. Sika, & M.Balakrishnan. (2025). AI-Driven Computational Frameworks: Advancing Edge Intelligence and Smart Systems. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1165 10.22399/ijasrar.22 García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.22
Item Type: | Article |
---|---|
Subjects: | Mechanical Engineering > Manufacturing Technology |
Domains: | Mechanical Engineering |
Depositing User: | Mr IR Admin |
Date Deposited: | 21 Aug 2025 10:48 |
Last Modified: | 21 Aug 2025 10:48 |
URI: | https://ir.vistas.ac.in/id/eprint/10272 |