Salam, Abdus and Chowdhury, Moajjem Hossain and Murugappan, M. and Chowdhury, Muhammad E. H. (2025) Multicentered Data Based Polyp Detection Using Colonoscopy Images Using DNN. International Journal of Imaging Systems and Technology, 35 (4). ISSN 0899-9457
Full text not available from this repository. (Request a copy)Abstract
Multicentered Data Based Polyp Detection Using Colonoscopy Images Using DNN Abdus Salam Department of Electrical & Computer Engineering Rajshahi University of Engineering & Technology Rajshahi Bangladesh Department of Electrical Engineering Qatar University Doha Qatar Moajjem Hossain Chowdhury Department of Electrical Engineering Qatar University Doha Qatar M. Murugappan Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering Kuwait College of Science and Technology Doha Kuwait Department of Electronics and Communication Engineering Vels Institute of Sciences, Technology, and Advanced Studies Chennai Tamil Nadu India https://orcid.org/0000-0002-5839-4589 Muhammad E. H. Chowdhury Department of Electrical Engineering Qatar University Doha Qatar ABSTRACT
The diagnosis and screening of colon polyps are essential for the early detection of colorectal cancer. Polyps can be identified through colonoscopies before becoming cancerous, making accurate detection and prompt intervention critical for colorectal health. A comprehensive evaluation of deep learning models using colonoscopy images and comparisons with state‐of‐the‐art models is presented in this study. A total of 7900 still and video sequence images from the PolypGen multicenter data set were used to train cutting‐edge object detection models, including YOLOv5, YOLOv7, YOLOv8, and F‐RCNN + ResNet101. In terms of accuracy, precision, recall, and mAP, the YOLOv8x model achieved the best performance with an F1 score of 0.9058, accuracy of 0.949, precision of 0.863, and mAP@0.5. The robustness of the model was further confirmed across varying patient demographics and conditions using the external Kvasir data set. To enhance interpretability, the EigenCam explainable AI (XAI) technique was used, offering visual insights into the model's decision‐making process by highlighting the most influential regions in the input images.
   06 05 2025   07 2025   e70123 10.1002/ima.70123   2 10.1002/crossmark_policy   onlinelibrary.wiley.com   true  2024-05-22 2025-05-18 2025-06-05  http://onlinelibrary.wiley.com/termsAndConditions#vor        10.1002/ima.70123 https://onlinelibrary.wiley.com/doi/10.1002/ima.70123   https://onlinelibrary.wiley.com/doi/pdf/10.1002/ima.70123      10.1053/j.gastro.2012.06.001   10.7326/0003‐4819‐139‐12‐200312160‐00005   10.7326/0003‐4819‐119‐8‐199310150‐00010   10.3322/CA.2007.0018   10.1093/ANNONC/MDW235   10.1053/J.GASTRO.2018.08.063   10.1148/RADIOL.11101887/‐/DC1   10.1046/j.1365‐2168.2002.02120.x   10.1056/NEJMoa1100370   10.1038/ajg.2014.435   10.1016/j.measurement.2022.111485   10.1007/s00521‐023‐08407‐1   10.1186/S12916‐019‐1426‐2   10.1007/s44230‐024‐00067‐1   10.1038/AJG.2017.174   10.1109/CISP.2015.7407907   10.1109/TITB.2003.813794   10.1109/JSEN.2020.3036005   X.Yang E.Song G.Ma et al. “YOLO‐OB: An Improved Anchor‐Free Real‐Time Multiscale Colon Polyp Detector in Colonoscopy ”2023.   10.1007/s10489‐022‐04299‐1   10.1016/J.MEDIA.2022.102625   10.1109/ACCESS.2019.2921027   10.3390/APP9122404   10.1016/J.BSPC.2019.04.007   D.Jha N. K.Tomar V.Sharma et al. “PolypDB: A Curated Multi‐Center Dataset for Development of AI Algorithms in Colonoscopy ”2024.   10.1038/s41597‐023‐01981‐y   10.1038/s41598‐024‐66642‐5   10.1109/ACCESS.2022.3171238   10.1371/JOURNAL.PONE.0250632   10.1007/S11042‐023‐17138‐3   10.1016/J.COMPBIOMED.2021.105031   10.1109/IWSSIP48289.2020.9145130   10.1007/978-3-030-00889-5_1   10.1038/s41597‐020‐00622‐y   10.1109/ACCESS.2021.3063716   CEUR Workshop Proceedings Alam S. 2882 2020 Automatic Polyp Segmentation Using U‐Net‐ResNet50   10.3390/s21165315   2019 13th International Symposium on Medical Information and Communication Technology Qadir H. A. 1 2019   10.1016/j.compeleceng.2020.106959   10.1016/J.ESWA.2023.119741   10.3390/app10238501   10.1016/j.tige.2021.09.004   Advances in Neural Information Processing Systems Ren S. 28 2015 Faster R‐CNN: Towards Real‐Time Object Detection With Region Proposal Networks   10.1109/CVPR.2014.81   10.1109/ICCV.2015.169 R.Girshick “Fast R‐CNN”2015.   K.SimonyanandA.Zisserman “Very Deep Convolutional Networks for Large‐Scale Image Recognition ”2014.   10.3348/KJR.2019.0651   10.1109/CVPR.2016.91   C.‐Y.Wang A.Bochkovskiy andH.‐Y. M.Liao “Scaled‐YOLOv4: Scaling Cross Stage Partial Network ”n.d.   10.1109/ACCESS.2018.2856402   10.1109/CVPR.2016.319   10.1109/ICCV.2017.74   10.1109/WACV.2018.00097   10.1109/IJCNN48605.2020.9206626   10.1109/ACCESS.2025.3536621   10.1016/j.patrec.2023.03.003
| Item Type: | Article | 
|---|---|
| Subjects: | Biomedical Engineering > Medical Imaging | 
| Domains: | Biomedical Engineering | 
| Depositing User: | Mr IR Admin | 
| Date Deposited: | 21 Aug 2025 10:30 | 
| Last Modified: | 21 Aug 2025 10:30 | 
| URI: | https://ir.vistas.ac.in/id/eprint/10259 | 



 Dimensions
 Dimensions Dimensions
 Dimensions