Yuvarani, K. and Kathireshan, A.K. (2025) Growth Optimization of Arthrospira platensis SPKY1 for Insulin Production. Journal of Pure and Applied Microbiology, 19 (2). pp. 1479-1492. ISSN 09737510
![[thumbnail of Growth_Optimization_of_Arthrospira_platensis_SPKY1.pdf]](https://ir.vistas.ac.in/style/images/fileicons/text.png) Text
            
              
Text
Growth_Optimization_of_Arthrospira_platensis_SPKY1.pdf
Download (1MB)
Abstract
Growth Optimization of Arthrospira platensis SPKY1 for Insulin Production K. Yuvarani https://orcid.org/0009-0000-2774-7276 A.K. Kathireshan https://orcid.org/0000-0002-0164-5252
The escalating global burden of diabetes underscores the urgent need for sustainable insulin production. This study explores the potential of Arthrospira platensis SPKY1 as an alternative source of insulin, particularly pertinent in regions with high diabetes prevalence like India. Through comprehensive experimentation, factors influencing insulin production in A. platensis SPKY1 are investigated, including growth media composition, pH levels, light conditions, greenhouse cultivation, water types and carbon sources. Results reveal those higher concentrations of specific growth media components, such as NaHCO3, NaNO3, NaCl, K2SO4, and K2HPO4, correlate with increased insulin production. Among these components, K2SO4 at a concentration of 1.4 g L-1 showed the highest insulin production, reaching 27.5 µg g-1. Additionally, the study evaluated the impact of various pH levels, finding that pH 10.0 yielded optimal insulin production, with a peak of 21.3 µg g-1. Blue light exposure stimulated the most significant increase in insulin production, with levels ranging from 5.4 to 25.1 µg g-1. Additionally, enriched seawater proved more effective than regular medium for insulin production. The study also demonstrated that glucose proved to be the optimal carbon source, with insulin production reaching 29.4 µg g-1. The study determines the optimal growth conditions of A. platensis SPKY1 for insulin production on a pilot scale.
   6 1 2025   6 4 2025   1479 1492   https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/   10.22207/JPAM.19.2.53 https://microbiologyjournal.org/growth-optimization-of-arthrospira-platensis-spky1-for-insulin-production/   https://microbiologyjournal.org/growth-optimization-of-arthrospira-platensis-spky1-for-insulin-production/   https://microbiologyjournal.org/growth-optimization-of-arthrospira-platensis-spky1-for-insulin-production/     https://microbiologyjournal.org/growth-optimization-of-arthrospira-platensis-spky1-for-insulin-production/      10.1016/S0140-6736(20)32374-6 1. Chan JCN, Lim LL, Wareham NJ, et al. The Lancet Commission on diabetes: using data to transform diabetes care and patient lives [published correction appears in Lancet. 2021;396(10267):2019-2082. doi: 10.1016/S0140-6736(20)32374-6   10.1016/j.diabres.2023.110945 2. Sun H, Saeedi P, Karuranga S, et al. Erratum to ''IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045''. Diabetes Res Clin Pract. 2023;204:110945. doi: 10.1016/j.diabres.2023.110945   10.1186/s12913-018-3772-8 3. Afroz A, Alramadan MJ, Hossain MN, et al. Cost-of-illness of type 2 diabetes mellitus in low and lower-middle income countries: a systematic review. BMC Health Serv Res. 2018;18(1):972. doi: 10.1186/s12913-018-3772-8   10.1016/S0140-6736(23)02044-5 4. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021 [published correction appears in Lancet. 2023;402(10408):1132. doi: 10.1016/S0140-6736(23)02044-5   10.1016/S2213-8587(23)00119-5 5. Anjana RM, Unnikrishnan R, Deepa M, et al. Metabolic non-communicable disease health report of India: the ICMR-INDIAB national cross-sectional study (ICMR-INDIAB-17). Lancet Diabetes Endocrinol. 2023;11(7):474-489. doi: 10.1016/S2213-8587(23)00119-5   10.2337/diacare.29.s1.06.s43 6. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2006;29(Suppl 1):S43-S48. doi: 10.2337/diacare.29.s1.06.s43   10.1001/jama.2016.9400 7. Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of Clinical Outcomes and Adverse Events Associated with Glucose-Lowering Drugs in Patients with Type 2 Diabetes: A Meta-analysis. JAMA. 2016;316(3):313-324. doi: 10.1001/jama.2016.9400   10.1016/j.metabol.2015.10.014 8. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016;65(2):20-29. doi: 10.1016/j.metabol.2015.10.014   9. Banting FG, Best CH. Pancreatic extracts. J. Lab. Clin. Med. 1990;115:254-272. https://pubmed.ncbi.nlm.nih.gov/2405086/   10.1016/S0140-6736(03)13375-2 10. Laing R, Waning B, Gray A, Ford N, 't Hoen E. 25 years of the WHO essential medicines lists: progress and challenges. Lancet. 2003;361(9370):1723-1729. doi: 10.1016/S0140-6736(03)13375-2   10.1016/S2213-8587(15)00521-5 11. Beran D, Ewen M, Laing R. Constraints and challenges in access to insulin: a global perspective. Lancet Diabetes Endocrinol. 2016;4(3):275-285. doi: 10.1016/S2213-8587(15)00521-5   10.1093/inthealth/ihy012 12. Sharma A, Bhandari PM, Neupane D, Kaplan WA, Mishra SR. Challenges constraining insulin access in Nepal-a country with no local insulin production. Int Health. 2018;10(3):182-190. doi: 10.1093/inthealth/ihy012   13. WHO Essential Medicines and health products information portal [Internet]. India: National list of essential medicines. 2015. http://apps.who.int/medicinedocs/en/d/Js23088en/. Accessed 16 June 2018.   10.1596/978-0-8213-9618-6 14. La Forgia G, Nagpal S. Government-sponsored health insurance in India: are you covered? Washington, DC: World Bank Publications. 2012. doi: 10.1596/978-0-8213-9618-6   15. Ravi S, Ahluwalia R, Bergkvist S. Health and morbidity in India (2004-2014). Brookings India. Research Paper No. 092016. 2016.   16. Government of India, Department of Pharmaceuticals. Jan Aushadhi. Delhi: Bureau of Pharma PSUs of India. http://janaushadhi.gov.in/. Accessed April 19, 2017.   17. Singhal GL, Anita K, Nanda A. Jan Aushadhi store in India and quality of medicines therein. Int J Pharm Pharm Sci. 2011;3(1):204-207.   10.5455/jice.20151230055930 18. Hozayen WG, Mahmoud AM, Soliman HA, Mostafa SR. Spirulina versicolor improves insulin sensitivity and attenuates hyperglycemia-mediated oxidative stress in fructose-fed rats. J Intercult Ethnopharmacol. 2016;5(1):57-64. doi: 10.5455/jice.20151230055930   10.29011/2577-2201.100231 19. Yuvarani K, Kathireshan AK. Genomic exploration of insulin-like proteins in Arthrospira platensis SPKY1. Curr Res Cmpl Alt Med. 2024;8:231. doi: 10.29011/2577-2201.100231   20. Zarrouk C. Contribution to the study of a cyanobacterium: influence of various physical and chemical factors on the growth and photosynthesis of Spirulina maxima (Setchell and Gardner) Geitler. [PhD thesis]. University of Paris; France: 1966.   10.1016/S0032-9592(99)00005-9 21. Donmez GC, Aksu Z, Ozturk A, Kutsal T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999;34(9):885-892. doi: 10.1016/S0032-9592(99)00005-9   22. National Center for Biotechnology Information. PubChem Patent Summary for US-3945988-A, Process for isolation of insulin from plant source. https://pubchem.ncbi.nlm.nih.gov/patent/US-3945988-A. Accessed Jan. 31, 2025.   10.1111/fcp.12413 23. Ozcan M, Canpolat S, Bulmus O, et al. Agomelatine pretreatment prevents development of hyperglycemia and hypoinsulinemia in streptozotocin-induced diabetes in mice. Fundam Clin Pharmacol. 2019;33(2):170-180. doi: 10.1111/fcp.12413   10.1136/bmjgh-2016-000112 24. Sharma A, Kaplan WA. Challenges constraining access to insulin in the private-sector market of Delhi, India. BMJ Glob Health. 2016;1(3):e000112. doi: 10.1136/bmjgh-2016-000112   10.1007/s00253-004-1809-x 25. Walsh G. Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol. 2005;67(2):151-159. doi: 10.1007/s00253-004-1809-x   10.1016/0168-1656(96)01514-3 26. Nilsson J, Jonasson P, Samuelsson E, Stוhl S, Uhlen M. Integrated production of human insulin and its C-peptide. J Biotechnol. 1996;48(3):241-250. doi: 10.1016/0168-1656(96)01514-3   10.1186/1475-2859-12-113 27. Ferrer-Miralles N, Villaverde A. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Fact. 2013;12:113. doi: 10.1186/1475-2859-12-113   10.3390/molecules27175584 28. AlFadhly NKZ, Alhelfi N, Altemimi AB, Verma DK, Cacciola F, Narayanankutty A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules. 2022;27(17):5584. doi: 10.3390/molecules27175584   10.1016/j.tifs.2017.09.010 29. Soni AR, Sudhakar K, Rana RSA. Spirulina - From growth to nutritional product: A review. Trends Food Sci Technol. 2017;69(Part A):157-171. doi: 10.1016/j.tifs.2017.09.010   10.1097/01.COT.0000282543.06339.35 30. Layam A, Reddy CLK. Antidiabetic property of Spirulina. Diabetol Croat. 2007;35(2):29-33.   10.1590/fst.23920 31. Guldas M, Ziyanok S, Sahan Y, Yildiz E, Gurbuz O. Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Sci Technol. 2021;41(3):615-625. doi: 10.1590/fst.23920   10.1007/s13205-018-1156-8 32. Simon JP, Baskaran UL, Shallauddin KB, Ramalingam G, Evan Prince S. Evidence of antidiabetic activity of Spirulina fusiformis against streptozotocin-induced diabetic Wistar albino rats. 3 Biotech. 2018;8(2):129. doi: 10.1007/s13205-018-1156-8   10.1007/s10811-012-9924-z 33. Anwer R, Alam M, Khursheed S, Shaikh MK, Kabir H, Fatma T. Spirulina: Possible pharmacological evaluation for insulin-like protein. J Appl Phycol. 2012;25(3). doi: 10.1007/s10811-012-9924-z   10.5455/jice.20151230055930 34. Hozayen WG, Mahmoud AM, Soliman HA, Mostafa SR. Spirulina versicolor improves insulin sensitivity and attenuates hyperglycemia-mediated oxidative stress in fructose-fed rats. J Intercult Ethnopharmacol. 2016;5(1):57-64. doi: 10.5455/jice.20151230055930   35. Pandey JP, Tiwari A, Mishra G, Mishra R. Role of Spirulina maxima in the control of blood glucose levels and body weight in streptozotocin-induced diabetic male Wistar rats. J Algal Biomass Util. 2011;2(4):35-37.   10.1590/S0100-879X2002000300004 36. Silva LB, Santos SSS, Azevedo CR, et al. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens. Braz J Med Biol Res. 2002;35(3):297-303. doi: 10.1590/S0100-879X2002000300004   10.1007/s10811-011-9757-1 37. Anwer R, Khursheed S, Fatma T. Detection of immunoactive insulin in Spirulina. J Appl Phycol. 2011;24(3). doi: 10.1007/s10811-011-9757-1   38. Kaushik BD, Sharma RK. Influence of salinity on selected enzymes in cyanobacteria. Indian J Microbiol. 1997;37:99-100.   39. El-Monem A, Gharieb M, Hussian AE, Doman K. Effect of pH on phytochemical and antibacterial activities of Spirulina platensis. Int J Appl Environ Sci. 2018;13(4):339-351.   10.3923/biotech.2003.222.240 40. Abd El-Baky H, El-Baz FK, El-Baroty GS. Spirulina species as a source of carotenoids and a-tocopherol and its anticarcinoma factors. Biotechnol. 2003;2(3):222-240. doi: 10.3923/biotech.2003.222.240   10.3923/biotech.2005.19.22 41. Rafiqul IM, Jalal KCA, Alam MZ. Environmental factors for optimisation of Spirulina biomass in laboratory culture. Biotechnol. 2005;4(1):19-22. doi: 10.3923/biotech.2005.19.22   42. Thirumala M. Optimization of growth of Spirulina platensis for production of carotenoids. Int J Life Sci Biotechnol Pharm Res. 2012;1(2):152-157.   10.1016/j.algal.2019.101600 43. Hsieh-Lo M, Castillo G, Ochoa-Becerra MA, Mojica L. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Res. 2019;42:101600. doi: 10.1016/j.algal.2019.101600   10.1002/9781118567166.ch2 44. Masojidek J, Torzillo G, Koblizek M. Photosynthesis in microalgae. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 2013:20-39. doi: 10.1002/9781118567166.ch2   10.1007/s10811-014-0427-y 45. de Mooij T, Janssen M, Cerezo O, et al. Antenna size reduction as a strategy to increase biomass productivity: A great potential not yet realized. J Appl Phycol. 2015;27(3):1063-1077. doi: 10.1007/s10811-014-0427-y   10.1155/2016/7803846 46. Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical Application of Spirulina platensis Derived C-Phycocyanin. Evid Based Complement Alternat Med. 2016;2016(1):7803846. doi: 10.1155/2016/7803846   47. Goksan T, Zekeriyaoglu A, Ilknur Ak . The growth of Spirulina platensis in different culture systems under greenhouse condition. Turk J Biol. 2007;31:47-52.   10.1515/znc-2008-1-216 48. Andrade MR, Costa JA. Outdoor and indoor cultivation of Spirulina platensis in the extreme south of Brazil. Z Naturforsch C J Biosci. 2008;63(1-2):85-90. doi: 10.1515/znc-2008-1-216   10.1515/botm.1993.36.2.99 49. Wu B, Tseng CK, Xiang W. Large-scale cultivation of Spirulina in seawater-based culture medium. Botanica Marina. 1993;36(2):99-102. doi: 10.1515/botm.1993.36.2.99   50. Dineshkumar R, Sampathkumar P, Rajendran N. Cultivation of Spirulina platensis in different selective media. Indian J Mar Sci. 2016;45(12).   10.1021/acsomega.4c01604 51. Harutyunyan A, Gabrielyan L, Aghajanyan A, et al. Comparative Study of Physicochemical Properties and Antibacterial Potential of Cyanobacteria Spirulina platensis-Derived and Chemically Synthesized Silver Nanoparticles. ACS Omega. 2024;9(27):29410-29421. doi: 10.1021/acsomega.4c01604   10.1016/S0141-0229(00)00208-8 52. Shi X, Zhang X, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol. 2000;27(3-5):312-318. doi: 10.1016/S0141-0229(00)00208-8   10.1016/j.bej.2011.12.001 53. Isleten-Hosoglu M, Gultepe I, Elibol M. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence-based method for quantification of its neutral lipid content. Biochem Eng J. 2012;61:11-19. doi: 10.1016/j.bej.2011.12.001   10.1007/BF00005896 54. Tan CK, Johns MR. Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia. 1991;215:13-19. doi: 10.1007/BF00005896   10.1007/s00343-009-9216-x 55. Qiao H, Wang G. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese J Oceanol Limnol. 2009;27(4):762-768. doi: 10.1007/s00343-009-9216-x
| Item Type: | Article | 
|---|---|
| Subjects: | Microbiology > Genome Organisation | 
| Domains: | Microbiology | 
| Depositing User: | Mr IR Admin | 
| Date Deposited: | 23 Aug 2025 09:54 | 
| Last Modified: | 23 Aug 2025 09:54 | 
| URI: | https://ir.vistas.ac.in/id/eprint/10096 | 



 Dimensions
 Dimensions Dimensions
 Dimensions