Antimicrobial Resistance and Biofilm Formation in Klebsiella pneumoniae Clinical Isolates

Gowrinathan, Sivaranjani and Gururajan, Gayathri and Kaliyaperumal, Kathireshan A. and Samson, Leah Ashrita and Vijayaraman, Rajyoganandh Subramanian and Renganathan, Senthil (2025) Antimicrobial Resistance and Biofilm Formation in Klebsiella pneumoniae Clinical Isolates. Journal of Pure and Applied Microbiology, 19 (1). pp. 369-378. ISSN 09737510

Full text not available from this repository. (Request a copy)

Abstract

Antimicrobial Resistance and Biofilm Formation in Klebsiella pneumoniae Clinical Isolates Sivaranjani Gowrinathan https://orcid.org/0009-0007-2153-9979 Gayathri Gururajan https://orcid.org/0000-0003-3648-2411 Kathireshan A. Kaliyaperumal https://orcid.org/0000-0002-0164-5252 Leah Ashrita Samson Rajyoganandh Subramanian Vijayaraman https://orcid.org/0000-0003-3867-2999 Senthil Renganathan https://orcid.org/0000-0002-8451-9832

The prevalence of multidrug-resistant Klebsiella pneumoniae is extensive, both in healthcare settings and the general population. Biofilm formation in K. pneumoniae plays a key role in infection pathogenesis and serves as important defensive strategy against antibiotics and immune evasion. This study examined the presence of efflux pumps, potential for biofilm development, and antibiotic susceptibility profiles of K. pneumoniae clinical isolates. Antibiotic susceptibility testing of K. pneumoniae isolates was performed using the disc diffusion method. All isolates were tested for efflux pump presence using the cartwheel method, and biofilm production was estimated using tissue culture plate, tube, and Congo red agar methods. PCR amplification was performed using specific primers to detect genes encoding drug resistance and biofilm formation. All 17 isolates of K. pneumoniae isolates exhibited multidrug- resistance and functional efflux pumps. Nevertheless, the capacity of these organisms to produce biofilms differed, with eight (47%) strong biofilm formers, seven (41%) moderate biofilm formers, and two (11%) weak biofilm formers. The antibiotic resistance genes, blaCTX-M , blaKPC , and blaNDM were present in 15 (88%), 11 (64%), and seven (41%) K. pneumoniae isolates, respectively. The genes, acrAB, tolC, and mdtK, encoded efflux pumps present in 12 (70%), 15 (88%), and 10 (58%) isolates, respectively. Biofilm genes, mrkD, fimH, and luxS, were present in 16 (94%) isolates. This study revealed multiple factors that lead to the notable drug resistance observed in K. pneumoniae isolates. Therefore, it is advisable to implement a holistic strategy for managing diseases caused by pathogenic bacteria.
3 1 2025 2 27 2025 369 378 https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ 10.22207/JPAM.19.1.27 https://microbiologyjournal.org/antimicrobial-resistance-and-biofilm-formation-in-klebsiella-pneumoniae-clinical-isolates/ https://microbiologyjournal.org/antimicrobial-resistance-and-biofilm-formation-in-klebsiella-pneumoniae-clinical-isolates/ https://microbiologyjournal.org/antimicrobial-resistance-and-biofilm-formation-in-klebsiella-pneumoniae-clinical-isolates/ https://microbiologyjournal.org/antimicrobial-resistance-and-biofilm-formation-in-klebsiella-pneumoniae-clinical-isolates/ 10.3390/ijerph19084788 1. Al-Bayati M, Samarasinghe S. Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. Int J Environ Res Public Health. 2022;19(8):4788. doi: 10.3390/ijerph19084788 10.3390/ijms20235954 2. Yaita K, Gotoh K, Nakano R, et al. Biofilm-Forming by Carbapenem Resistant Enterobacteriaceae May Contribute to the Blood Stream Infection. Int J Mol Sci. 2019;20(23):5954. doi: 10.3390/ijms20235954 10.5812/jjm.30682 3. Seifi K, Kazemian H, Heidari H, et al. Evaluation of Biofilm Formation Among Klebsiella pneumoniae Isolates and Molecular Characterization by ERIC-PCR. Jundishapur J Microbiol. 2016;9(1):e30682. doi: 10.5812/jjm.30682 10.2217/fmb.14.48 4. Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 2014;9(9):1071-1081. doi: 10.2217/fmb.14.48 10.1186/s12919-019-0176-7 5. Nirwati H, Sinanjung K, Fahrunissa F, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019;13(Suppl 11):20. doi: 10.1186/s12919-019-0176-7 10.1093/femsre/fuy043 6. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defence. FEMS Microbiol Rev. 2019;43(2):123-144. doi: 10.1093/femsre/fuy043 10.1186/s13104-020-05105-2 7. Akinpelu S, Ajayi A, Smith SI, Adeleye AI. Efflux pump activity, biofilm formation and antibiotic resistance profile of Klebsiella spp. isolated from clinical samples at Lagos University Teaching Hospital. BMC Res Notes. 2020;13(1):258. doi: 10.1186/s13104-020-05105-2 10.3390/antibiotics8040229 8. Reza A, Sutton JM, Rahman KM. Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in Gram-Negative (ESKAPEE) Bacteri. Antibiotics. 2019;8(4):229. doi: 10.3390/antibiotics8040229 9. CLSI, Performance Standards for Antimicrobial Susceptibility Testing, Clinical and Laboratory Standards Institute, 2023, 33rd Ed. CLSI Supplement M100. 10.2174/1874285801307010072 10. Martins M, McCusker MP, Viveiros M, et al. A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps. Open Microbiol J. 2013;7:72-82. doi: 10.2174/1874285801307010072 10.1128/jcm.22.6.996-1006.1985 11. Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996-1006. doi: 10.1128/jcm.22.6.996-1006.1985 10.1590/S1413-86702011000400002 12. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011;15(4):305-311. doi: 10.1590/S1413-86702011000400002 10.1016/j.sjbs.2020.01.001 13. Al-Shabib NA, Husain FM, Rehman MT, et al. Food color 'Azorubine' interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi J Biol Sci. 2020;27(4):1080-1090. doi: 10.1016/j.sjbs.2020.01.001 10.1101/pdb.prot093450 14. Green MR, Sambrook J. Isolation of High-Molecular-Weight DNA Using Organic Solvents. Cold Spring Harb Protoc. 2017;2017(4):pdb.prot093450. doi: 10.1101/pdb.prot093450 10.3390/pathogens3030743 15. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathog. 2014;5;3(3):743-58. doi: 10.3390/pathogens3030743 10.3389/fmicb.2018.03198 16. Ferreira RL, da Silva BCM, Rezende GS, et al. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and b-Lactamase Encoding Genes in Brazilian Intensive Care Unit. Front Microbiol. 2019;9:3198. doi: 10.3389/fmicb.2018.03198 10.1186/s12941-021-00418-x 17. Shadkam S, Goli HR, Mirzaei B, Gholami M, Ahanjan M. Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann Clin Microbiol Antimicrob. 2021;20(1):13. doi: 10.1186/s12941-021-00418-x 10.4161/viru.22974 18. Alcantar-Curiel MD, Blackburn D, Saldana Z, et al. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence. 2013;4(2):129-138. doi: 10.4161/viru.22974 10.1089/mdr.2018.0414 19. Maurya N, Jangra M, Tambat R, Nandanwar H. Alliance of efflux pumps with b-lactamases in multidrug-resistant Klebsiella pneumoniae isolates. Microb Drug Resist. 2019;25(8):1155-1163. doi: 10.1089/mdr.2018.0414 10.1016/j.ijantimicag.2019.06.004 20. Xu Q, Jiang J, Zhu Z, et al. Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. Int J Antimicrob Agents. 2019;54(2):223-227. doi: 10.1016/j.ijantimicag.2019.06.004 10.4103/0255-0857.19890 21. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol. 2006;24(1):25-29. doi: 10.4103/0255-0857.19890 10.4103/jgid.jgid_150_19 22. Harika K, Shenoy VP, Narasimhaswamy N, Chawla K. Detection of Biofilm Production and Its Impact on Antibiotic Resistance Profile of Bacterial Isolates from Chronic Wound Infections. J Glob Infect Dis. 2020;12(3):129-134. doi: 10.4103/jgid.jgid_150_19 10.5812/jjm.22345 23. Corehtash ZG, Khorshidi A, Firoozeh F, Akbari H, Aznaveh AM. Biofilm Formation and Virulence Factors among Pseudomonas aeruginosa Isolated from Burn Patients. Jundishapur J Microbiol. 2015;8(10):e22345. doi: 10.5812/jjm.22345 10.1128/JB.188.10.3572-3581.2006 24. Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S. In Vitro Biofilm Formation of Commensal and Pathogenic Escherichia coli Strains: Impact of Environmental and Genetic Factors. J Bacteriol. 2006;188:3572-3581. doi: 10.1128/JB.188.10.3572-3581.2006 10.3389/fmicb.2019.01558 25. Panjaitan NSD, Horng YT, Cheng SW, Chung WT, Soo PC. EtcABC, A Putative EII complex, regulates type 3 fimbriae via CRP-cAMP signaling in Klebsiella pneumoniae. Front Microbiol. 2019;10(1):1558-1563. doi: 10.3389/fmicb.2019.01558 10.1186/s13568-021-01282-w 26. Mirzaie A, Ranjbar R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express. 2021;11(1)-122. doi: 10.1186/s13568-021-01282-w 10.1007/s00284-014-0662-0 27. de Cassia AMR, de Barros EMR, Loureiro NG, de Melo HRL, Maciel MAV, Lopes ACS. Presence of fimH, mrkD, and irp2 Virulence Genes in KPC-2-Producing Klebsiella pneumoniae Isolates in Recife-PE, Brazil. Curr Microbiol. 2014;69(6):824-831. doi: 10.1007/s00284-014-0662-0 10.2174/1874285801913010249 28. Hamam SS, El Kholy RM, Zaki MES. Study of Various Virulence Genes, Biofilm Formation and Extended-Spectrum b-lactamase Resistance in Klebsiella pneumoniae Isolated from Urinary Tract Infections. The Open Microbiology Journal. 2019;13:249-255. doi: 10.2174/1874285801913010249

Item Type: Article
Subjects: Microbiology > Medical Microbiology
Domains: Microbiology
Depositing User: Mr IR Admin
Date Deposited: 23 Aug 2025 10:05
Last Modified: 23 Aug 2025 10:05
URI: https://ir.vistas.ac.in/id/eprint/10013

Actions (login required)

View Item
View Item