
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/389414796

Unmasking Malware with MDCNN: A New Era of Image-Based Detection

Conference Paper · January 2025

DOI: 10.1109/ICMSCI62561.2025.10894516

CITATIONS

0
READS

31

2 authors, including:

Gomathy M.

BCIIT,IP University

5 PUBLICATIONS 6 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gomathy M. on 06 March 2025.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/389414796_Unmasking_Malware_with_MDCNN_A_New_Era_of_Image-Based_Detection?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/389414796_Unmasking_Malware_with_MDCNN_A_New_Era_of_Image-Based_Detection?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gomathy-M-3?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gomathy-M-3?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gomathy-M-3?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gomathy-M-3?enrichId=rgreq-06eb99b33cddadc36f6981f8aba81ebd-XXX&enrichSource=Y292ZXJQYWdlOzM4OTQxNDc5NjtBUzoxMTQzMTI4MTMxNDAzOTQ3NUAxNzQxMjMyMzEwOTIz&el=1_x_10&_esc=publicationCoverPdf

Unmasking Malware with MDCNN- A New Era of

Image Based Detection

Gomathy M

Research Scholar, School of Computing Sciences, Vels

Institute of Science, Technology and Advanced Studies

(VISTAS)

Chennai, Tamilnadu

marimuthu.gomathy@gmail.com

A. Vidhya

Assistant Professor, Department of Information Technology,

School of Computing Sciences, Vels Institute of Science,

Technology and Advanced Studies (VISTAS)

Chennai, Tamilnadu.

avidhya.scs@velsuniv.ac.in

Abstract— Cybercrime has been a worldwide issue since the

internet's inception. The various online crimes that take place

have an impact on the general public. The various forms of

cybercrime committed online and around the world are always

evolving due to the development of the internet. In the current

digital age, when malware diversity and volume are increasing

rapidly, new methods must be used to identify malware more

quickly and accurately. Malware, which includes worms,

trojans, spyware, and adware, can have serious repercussions,

including financial losses, data breaches, and the interruption of

essential services. Manual heuristic inspection in malware

analysis is neither efficient nor effective in keeping up with the

rapid spread of malware or in analyzing new infections. Deep

learning enhances automatic malware variant detection and

classification as it provides better categorization by building

neural networks with more potentially different layers. They

have been applied to automate investigations using static and

dynamic analysis, where malware with comparable behaviors is

grouped and unidentified malware is categorized into families

according to how close it is to the other malware. In this research

paper, we extract various feature sets from malware image files,

including patterns, sizes, and textures, we utilized a novel

approach, the Malware Detection Convolutional Neural

Network (MDCNN) was employed to analyze malware in image

files and the proposed model shows 96.83% accuracy rate in

classifying the malware according to its family. The efficiency of

the model is compared with other deep learning models and has

shown the proposed model outperforms the other models.

Keywords— Cybercrime, CNN, Deep Learning Images, Malware,

I. INTRODUCTION

Malware can spread through multiple formats, such as text

files, PE headers, and images. Detecting malware in any of

these forms is essential for protecting against cyber-attacks.

This paper focuses on analyzing malware that is represented

in image format. We present a graphical representation

showing that the Trojan malware family accounts for 71% of

newly emerged malware varieties from the internet [1].

Malware consists of malicious code and various system calls

that indicate unauthorized access in different areas.

Identifying and classifying malware image patterns are a

challenging task for antivirus vendors. Within the field of

cybersecurity, malware research typically focuses on

executable files, using a variety of methods to identify and

eliminate risks. Nevertheless, as cyber dangers change,

attackers are turning to less conventional means of getting

past defenses. Steganography, a specific technique used to

embed spyware within image files, is a notable method.

Through investigating the embedding of malware into

images, researchers aim to enhance detection techniques,

bolster digital forensics capabilities, and prevent data

exfiltration. Gaining knowledge of these methods can assist

in safeguarding sensitive data and improve defenses against

Advanced Persistent Threats (APTs) [3]. Thus, identifying

spyware in images is essential to preventing cyber-attacks

and guaranteeing thorough security protocols. In this paper,

we introduce an innovative method called Malware Detection

Convolutional Neural Network (MDCNN) for analyzing

malware. This approach involves converting executable files

into image files, which are then analyzed using image

processing and deep learning techniques. This transformation

enables us to identify and classify malware, offering a new

perspective compared to traditional analysis methods. By

employing this technique, our goal is to uncover concealed

patterns and signatures that might not be detected in

traditional executable analysis, ultimately enhancing the

efficiency of malware detection and response strategies.

Section II discusses various authors' points on image analysis

in malware. Section III provides an in-depth description of

images related to malware and its various sections. An

extensive knowledge of CNNs' use in malware investigation

is given in Section IV, which also describes their design for

analyzing image data. Section V introduces the innovative

method MDCNN for analyzing malware within images,

utilizing an image dataset sourced from VirusTotal. Section

V provides the experimental outcomes of using the MDCNN

model to analyze malware in image form.

II. II LITERATURE REVIEW

The author of this study proposes a unique Reversible Data

Hiding (RDH) strategy called "GRDH" that is based on the

GAN model in the article [1]. A strong image generator that

could create realistic images was trained using the GAN

model. The trained generator was then fed into the

CycleGAN model to produce images with distinct semantic

information. The author created a mapping relationship

between noise and messages to embed messages. By teaching

an extractor to eliminate noise from the final dense image, the

message can be extracted. The suggested method's efficiency

is demonstrated by the outcomes of the experiments. It is

possible to disguise binary data in images by utilizing

StegnoGAN, which was proposed by [2]. Several unique

models have been proposed for image production. These

models are the basic, residual, and dense encoder

architectures. It is recommended that the Reed-Solomon bits-

per-pixel (RS- BPP) be utilized to better evaluate the

embedded data capacity while using GAN models for

steganography. An example of an ISGAN model was

presented by [3] to disguise the greyscale image within the Y

channel values of the color image. All of these components

are included to improve the overall performance of the

security system. In the ISGAN model, CNN-based layers are

utilized by three of the networks that comprise the model. In

a research article [4] proposed the use of ACGANs as a

means of preventing the cover images from being altered

while secret data was being transmitted. There is a set of

labels and the image database that are taken into

consideration when selecting the image that will be used for

the cover. The sender uses a dictionary to map the intended

message to the labels, and then they use the labels to select an

image from the database to send data.

The research paper [5] proposed the HiGAN model, which is

based on GANs, as a technique for hiding images inside other

images. A color image is concealed inside another color

image using the HiGAN technique. Three sub networks are

used by HiGAN to carry out GAN-based steganography. The

color secret image must be hidden, and the encoder does this

by using a correspondingly sized cover color image.

Convolutional neural networks (CNNs) form the foundation

of the novel ensemble architecture that the author [6]

presented for effective malware detection, both packed and

unpacked. By using a variety of CNN architectures, it was

possible to extract features with better quality than with

traditional methods. They increased the classification

accuracy by obtaining generic features through the use of

transfer learning. However, this approach has a disadvantage

as it requires more time to execute.

To help CNNs deal with skewed data and difficulties in

malware picture classification, [7] devised a weighted

softmax loss function. Through the implementation and fine-

tuning of this weighted softmax loss in the deep CNN model,

the author achieved encouraging outcomes in the malware

picture classification.

The study in the article [8] suggests a method for classifying

malware that makes use of convolutional neural networks

(CNNs) and image processing. The process entails collecting

Local Binary Pattern (LBP) features from malware and

translating it into binary pictures. The infected images are

first split into 3x3 grids, and then LBP is used to extract

features that can be used to classify textures or patterns.

The author of [9] used Siamese neural networks to classify

malware images using one-shot image recognition. The

outcomes of the experiment showed that this strategy worked

better than the baseline techniques. According to empirical

findings, Siamese network-based one-shot image recognition

produced a test accuracy of 92.0%.

 A classification technique based on common visual

attributes is presented in this research. The author [10] used

K-nearest neighbor (KNN) for classification and GIST

filtering, which efficiently computes texture features for

malware images using wavelet decomposition. With a total

classification time of 1.4 seconds, the GIST feature extraction

took 54 ms. Comparing the suggested method to previous

classification and filtering algorithms, it is about 40 times

faster.

 [11] proposed a 98% accurate Convolutional Neural

Network (CNN) model for classifying malware images.

According to the experimental findings, this accuracy is

comparable to the k-nearest neighbor (KNN) classification

method. This strategy works better than several conventional

classification techniques.

To categorize malware into its appropriate family and

differentiate it from benign files, the author presents Malware

Spectrogram Image Classification (MSIC), which makes use

of spectrogram images in conjunction with convolutional

neural networks (CNNs). The malware file is shown as a

spectrogram image in the first stage, and this image is used

as input for the CNN classifier. CNN is used in the second

stage to categorize the spectrogram images, and it works

better than any other technique.

A deep learning-based approach for malware detection

(DLMD) that classifies various malware types utilizing static

approaches was proposed [12]. The suggested method uses

two different Deep Convolutional Neural Networks (CNNs)

to extract features from byte data. The drawbacks of

individual feature areas are lessened with the aid of this

hybrid feature space. Eventually, a Multi-Layer Perceptron

(MLP) is used to classify malware families.

 The performance of Deep Neural Networks (with various

architectures) and traditional machine learning Random

Forest techniques for the classification of malware with

various feature sets is compared in this article by [13].

Overall, it was shown that Random Forest performed better

than DNN's multilayer architecture. RF and DNN achieved

the highest accuracy of 99.78% and 99.21%, respectively.

To identify malware families in a metamorphic malware

environment, this paper [14] presents a deep convolutional

neural network (CNN) model supplemented by image

augmentation. The author's main contribution is the creation

of a malware family classification model that uses CNNs to

improve image classification accuracy and data augmentation

to handle malware variants. Malware developers frequently

utilize a variety of strategies to mask their destructive

activity, and data augmentation is a useful tool for

overcoming these difficulties.

[15] Investigates picture classification with TensorFlow-

implemented deep neural networks (DNNs), or deep learning.

TensorFlow is a well-known deep learning toolkit [16] used

to classify the MNIST dataset. The impacts of different

activation functions on classification performance were also

compared in the study. On the test data, the ReLU activation

function showed a classification accuracy of 98.43%.

III. MALWARE DETECTION CONVOLUTIONAL NEURAL

NETWORK(MDCNN)

A) Malware Images

Identifying visual anomalies in images generated from

executable files can be more straightforward than examining

their textual or binary content. When these files are

transformed into grayscale images, each byte maps to a

pixel's intensity, unveiling patterns and structures that might

be obscured in their raw forms [17]. This visual approach can

expose irregularities like unexpected patterns or sudden shifts

in pixel intensity, which could signal the presence of

malicious code. Malware often employs obfuscation

techniques that leave unique visual signatures, which deep

learning can be trained to detect [18][23]. By leveraging these

grayscale images, cybersecurity systems can improve Trojan

detection's precision and effectiveness.

To analyze grayscale images effectively and classify them

into different malware classes, an innovative technique

named Malware-Detection Convolutional Neural Network

(MDCNN) has been utilized. MDCNN is an abbreviation for

Malware Detection Convolutional Neural Network and it is a

new multi-class CNN architecture for the specific application

of malware detection. It employs the virtues of CNNs

[19][24] to automatically detect and retrieve hierarchically

the features from images, and thus, it decreases the number

of potential hypotheses and increases the accuracy of the

prediction. The network architecture of MDCNN is designed

to process the multi-dimensional data represented by

grayscale images, capturing both spatial and intensity-based

features that are crucial for distinguishing between different

types of malwares [25]. The primary objective of using

MDCNN is to perform multi-class classification of malware

based on the visual features extracted from grayscale images.

This approach enables cybersecurity analysts to categorize

and prioritize threats based on their specific characteristics

and behaviors, facilitating more targeted and effective

mitigation strategies. By employing advanced deep learning

techniques such as MDCNN, cybersecurity systems can

enhance their ability to accurately classify and mitigate

various malware, contributing to stronger defenses against

cyber threats.

Figure 1 Depicting Malware as an Image

To convert a binary file into an 8-bit vector and then into

grayscale images, begin by reading the file's binary content

using Python's file handling capabilities in binary mode ('rb').

This involves opening the file and reading its contents into a

variable. Next, use NumPy to convert the binary data into an

array of 8-bit integers (uint8), where each byte in the binary

file is equivalent to a pixel's intensity value ranging from 0 to

255. This array serves as the foundational 8-bit vector

representation of the grayscale image. Reshape the 8-bit

vector into a 2-dimensional array that reflects the desired

dimensions of the grayscale image. This step involves

determining the width and height of the image based on the

binary file's size and structure. With the reshaped array ready,

you can use libraries such as PIL (Python Imaging Library)

to create a grayscale image (mode='L'). Finally, save the

generated grayscale image in a suitable format like PNG or

JPEG. Figure 1 shows the visual conversion of an executable

file to a grey-scale image. This conversion process enables

visual representation and analysis of binary data, facilitating

tasks such as malware detection through image-based

machine learning approaches or simple visual inspection by

cybersecurity analysts [20]-[22]. Figure 2 displays a number

of grayscale images that depict malware executable files that

have been transformed. The visual comparison between

various malware kinds is made possible by the inclusion of

samples from the benign class and the five other malware

families in these images.

Figure 2 Malware Greyscale Images

The data for this analysis was sourced from Virus Total. Out

of the 7630 executable files obtained, all were converted into

grayscale images for malware analysis. After pre-processing,

6985 high-quality grayscale images were selected for further

analysis. Figure 3 shows the pictorial representation total

number of malware present in each family.

Figure 3 Percentage Distribution of Images Across Malware Families and
Benign Files

The dataset used for image-based malware analysis is

organized into several folders, each containing a distinct

number of files that represent different types of malware and

benign samples. These folders include Locker1 with 231

files, Mediyes1 with 1015 files, Winwebsec1 with 3090 files,

Zbot1 with 1498 files, Zeroaccess1 with 486 files, and

Benign2 with 665 files as shown in the above figure.

B. Unveiling the Architecture of MDCNN: A Deep Dive

The method of analyzing and categorizing malware utilizing

greyscale images generated from ransomware executables

and a Malware Detection Convolutional Neural Network

(MDCNN) model is depicted in the architecture diagram

above. Malware Detection Convolutional Neural Network

(MDCNN) used for image categorization. It is built using the

Keras framework and employs several of layers to alter the

input images into output class probabilities. Convolutional

layers, pooling layers, flattening layers, fully connected

layers, and dropout layers are among the layers in the design,

and each has a distinct function in the training process.

Figure 4 Architecture of MDCNN Model

Figure 4 shows the architectural diagram of the proposed

model MDCNN. First, executable files are transformed into

malware binaries, which are subsequently transformed into

greyscale pictures. The analysis of visual patterns in the

malware is made possible by the fact that each pixel in these

pictures corresponds to a byte in the binary file. These

greyscale pictures are preprocessed using an image generator.

Techniques including scaling, normalization, and data

augmentation may be used in the preprocessing. The

completion of the pretraining procedure is verified by the

decision point. If not, the procedure repeats, creating new

images and undergoing preprocessing until the pretraining is

finished. An MDCNN model receives the greyscale images

that have been preprocessed. This model probably consists of

several convolutional layers intended to extract patterns and

spatial hierarchies from the images. The model is composed

of at least three hidden layers, each of which introduces non-

linearity through the use of ReLU (Rectified Linear Unit)

activation functions, allowing the MDCNN to learn

complicated patterns. A Sparse Categorical Cross-entropy

loss function is applied to the training process to quantify the

difference between the predicted and real labels. For

classification jobs where the output labels are integers, this

loss function is appropriate.

Following training, the model is assessed by grouping images

into families based on the type of malware they include (e.g.,

Benign, Locker, Zbot). To verify that the model has learned

to distinguish between various malware families, its

performance is assessed to determine its ability to classify

new images. Overall, the architecture outlines a process

where malware binaries are converted into grayscale images,

preprocessed, and then fed into an MDCNN for training and

classification. The model MDCNN is capable of classifying

the malware based on the visual patterns identified in the

grayscale images, using deep learning techniques with an

accuracy score of 96.83%.

c) Pseudocode MDCNN model
• Input: Malware Images

• Output: Predicting the images and the family of Malware

Step 1: Initialize and Import the necessary Libraries

Step 2: Load the dataset and convert to greyscale images.

Step 3: Apply Pre-processing using the image generator on all

the images

Step 4: Split the dataset into training and validation

Step 5: Input the dataset to the chosen MDCNN model for

training

Step 6 : Call convolution_multiple_filters(I, filters, S, P)

Step 7: Apply Adam Activation and Sparse cross Entropy loss

function on the features extracted

Step 6: Model classifies and Predicts the output.

Step 7: Test the model

Step 8: Model Classify the image to its appropriate Malware

Family

Algorithm for Convolutional layer to combine the features

extracted

• Input: Image I, Filters F, Stride S, Padding P

• Output: Extract the features and combine it

Algorithm convolution_multiple_filters (I, filters, S, P)

Step 1: Initialize I, filters, S, P

Step 2: if P > 0:

padded_image = np. zeros((I.shape[0] + 2 * P, I.shape[1] + 2 * P))

padded_image [P:-P, P:-P] = I

I=padded_image

 Step 3: //Output dimensions

H_out = (I. shape [0] - filters [0]. shape [0] + 2 * P) / (S + 1)

W_out = (I. shape [1] - filters [0]. shape [1] + 2 * P) / S + 1

Step 4: Set feature_maps = np.zeros((H_out, W_out))

Step 5: for k, F in enumerate(filters):

for i in range(H_out):

for j in range(W_out):

 R = I [i*S : i*S + F. shape[0], j*S: j*S + F.shape[1]]

feature_maps[k][i, j] = np.sum(R * F)

Step 6: set feature_maps = np.maximum(0, O)

Step 7: combined_output = np.stack(feature_maps, axis=-1)

return feature_maps, combined_output

IV Result and Analysis of MDCNN

The standard metrics used to assess the effectiveness of

models for classification are accuracy, precision, and F1

score.

Accuracy:

The percentage of accurately identified events—both true

positives and true negatives is known as accuracy. The

accuracy score evaluates how well the model predicts the

dataset's categories. A higher accuracy rate suggests that the

model is more frequently producing accurate predictions. The

formula for calculating the accuracy is given by equation 1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑡𝑖𝑣𝑒

 (1)

Precision

Precision gauges how well a model prevents false positives

or the incorrect classification of harmless files as malicious.

Improved precision results in fewer false positives, which is

essential for applications due to misidentifying innocuous

files as malware might cause needless warnings or actions.

The formula for calculating the precision is given by equation

2.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2)

F1 Score

The F1 score provides an appropriate ratio between precision

and recall by taking the harmonic mean of these two

parameters. The F1 score is at its lowest at 0 and its highest

at 1 (perfect recall and precision). It provides a single statistic

for assessing model performance by striking a compromise

between recall and precision. F1 score and recall are

calculated by Equation 3 and Equation 4.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑋(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (4)

The following table presents the performance metrics of the

MDCNN model on the test data, derived from the

computations outlined above.

Table 1 Comparison of Performance Score of MDCNN

Comparison of Performance Score of MDCNN for Malware

Analysis with Deep Learning Model in Percentage

Model Accuracy F1 Score Recall Precision

VGG16 94.2 93.23 91 94.5

INCEPTION 93.1 92.14 89 88.6

MDCNN 96.83 97.56 96.78 97.3

RESNET 94.56 94.4 92 93.2

The MDCNN model is compared with the standard CNN

model to show its performance level. Table 1 illustrates the

comparative performance levels of various CNN models. The

accompanying table details the accuracy, F1 score, and recall

values achieved by each model. The VGG16 model, 93.1%

for the Inception model, 94.56% for the ResNet model, and

96.83% for the novel MDCNN model have the highest

accuracy scores. Comparably, VGG16, Inception, ResNet,

and MDCNN had F1 scores of 93.23%, 92.14%, 94.4%, and

97.56%, respectively. Recall ratings for VGG16 are 91%,

Inception is 89%, MDCNN is 96.83%, and ResNet is 92%.

The generated MDCNN model performs better than the

others based on performance criteria. Figure 5 shows the

graphical representation of this comparison. Of these models,

the MDCNN exhibits the best performance on all metrics,

with the best accuracy and F1 score compared to the typical

CNN models assessed.

Figure 5 Comparison of Performance Score of MDCNN

This indicates that the MDCNN model effectively balances

precision and recall, achieving robust performance in

classifying data. The results highlight MDCNN's capability

to outperform traditional CNN architectures like VGG16,

Inception, and ResNet in tasks requiring detailed

classification and recognition tasks. This underscores its

suitability for applications demanding high accuracy and

reliability in pattern recognition and classification. Figure 5

shows the graphical representation of the proposed model

MDCNN performance based on various metrics.

To assess the model's performance in detail, accuracy and loss

are key metrics. The proportion of accurately predicted

occurrences on the training dataset is known as training

accuracy. Elevated training accuracy indicates that the model

is interpreting the training data efficiently and gathering up

on its patterns. Although a high level of training accuracy is

ideal, it does not ensure that the model will function

effectively when exposed to new data. Overfitting may occur

if the model becomes too specialized in the training data,

failing to generalize to new, unseen data. Comparably,

validation accuracy calculates the proportion of instances on

the validation dataset which is different from the training

dataset that is properly predicted. The accuracy ratings of

both validation and training are evaluated to show whether or

not the model is well-generated or whether over fitting is

present. This helps determine the model's effectiveness on

new data during the process of execution. Based on this, the

hyper parameters can be adjusted appropriately and evaluate

the model's efficiency. The dataset's error between real and

predicted values is scaled using the loss function. For

instance, the categorical cross entropy loss function is mostly

used in classification problems. A lower validation loss

indicated that the model has performed well on new data,

helping to select the best model for training while preventing

over fitting and improving its ability to generalize. To reveal

how well the chosen model performs on the unknown data,

test loss analyses its effectiveness. Evaluating the model's

performance in practical situations is helpful.

Like validation loss, lower test loss also demonstrates the m

odel's efficacy and reliability by showing that the model is p

roducing reliable forecasts on unseen data. MDCNN is

robust and efficient in analyzing malware in image datasets,

as demonstrated by the accompanying diagram displays the

model's loss and accuracy score in the diagrammatic

representation. The following Figure 6 shows the comparison

diagram of validation accuracy and training accuracy to show

the efficacy and robustness of the model MDCNN.

Figure 6 Comparison of Training and Validation Accuracy, Training and

Validation Loss

The figure demonstrates that as the number of epochs

increases, the accuracy reaches its maximum point, while the

loss gradually drops, approaching zero with each epoch. This

trend indicates that the model is performing well as it

continues to improve and minimize errors during the training

process. An important factor in determining a model's

efficiency is its optimizer. Every optimizer has distinct

qualities that affect the model performance and how it is

trained. Concerning this, choosing the best optimizer is

challenging but necessary for attaining precise results.

ADAM (Adaptive Moment Estimation)

Momentum and Adaptive learning rates techniques are used

by ADAM optimizers to update model parameters. Adapting

the learning rates dynamically based on the magnitude and

diversity of the gradients, this technique enables swift and

accurate convergence. The ADAM optimizer achieves faster

convergence and better performance by managing complex

and varied data patterns.

ADADELTA (Adaptive Delta) is an optimization algorithm

that aims to address some limitations of traditional gradient

descent methods by adapting learning rates based on recent

gradient information. Using a moving average of the squared

gradients, this optimizer continuously alters the learning rate

for all the attributes. This approach helps to stabilize and

accelerate convergence by reducing the dependence on the

initial learning rate and making the optimization process

more robust to different scales of parameters. While

ADADELTA is effective in various training scenarios, the

ADAM optimizer is often preferred for tasks such as malware

analysis. ADAM combines the adaptive learning rates and

momentum from ADADELTA with additional techniques to

enhance convergence and performance, making it

particularly suitable for complex and demanding analyses.

Root Mean Square Propagation (RMSprop) is intended to

enhance training efficiency for deep learning models. It

functions by scaling the learning rate using the mean of

squared gradients and modifying the learning rate for each

parameter according to the magnitude of recent gradients.

This approach helps stabilize and accelerate convergence,

especially in scenarios with noisy or sparse gradients. While

RMSprop is effective in many training contexts, the ADAM

optimizer often provides even better performance,

particularly for tasks like malware analysis. ADAM builds on

RMSprop by combining its adaptive learning rates with

momentum, offering improved outcomes and increased

convergence for intricate analysis.

Stochastic Gradient Descent (SGD) modifies the

attribute of the model by repeatedly shifting in the direction

of the loss function's negative gradient. A small set of data

is used to expedite computation and accelerate convergence.

While SGD is effective due to its simplicity, the ADAM

optimizer often offers superior performance, particularly for

malware analysis. ADAM improves upon SGD by

incorporating adaptive learning rates and momentum, which

dynamically adjust the learning rates and track moving

averages of gradients, resulting in more effective

convergence and enhanced performance for complex tasks.

Compared to the aforementioned optimizers, our research

model MDCNN utilizes the ADAM optimizer due to its

adaptive properties and faster convergence rates. ADAM's

ability to dynamically adjust learning rates and its effective

handling of gradients make it particularly suited for

optimizing complex models, leading to more efficient

training and improved performance in our malware analysis.

Comparing Training Accuracy and Test Accuracy using

Various Optimizers:

Our research compared the accuracy score with various

optimizers. Table 2 gives a detailed analysis of accuracy

using various optimizers. The AdaGrad optimizer achieves a

training accuracy of 96.7% and a test accuracy of 96.6%,

indicating its effectiveness in both training and evaluating the

model. RMSprop, another optimizer, results in a training

accuracy of 95.3% and a slightly lower test accuracy of

94.4%, suggesting it may be less effective in generalizing

from the training data compared to AdaGrad. The SGD

optimizer shows a training accuracy of 95.24% and a test

accuracy of 95.3%, demonstrating consistent performance

across both training and testing phases, though slightly lower

than AdaGrad and ADAM. In contrast, the ADAM optimizer

achieves the highest performance with a training accuracy of

96.83% and a test accuracy of 96.82%.

Table 2 Accuracy-based Comparison of Different Optimizers used

in MDCNN Model

Comparison Training Accuracy and Test Accuracy

using various Optimizer

Optimizer Training

Accuracy %

Test Accuracy

%

Ada Grad 96.7 96.6

RMS Prop 95.3 94.4

SGD 95.24 95.3

ADAM 96.83 96.82

This consistency in high accuracy across both training and

test datasets highlights ADAM's superior capability in

effectively training the MDCNN model. Overall, ADAM

proves to be the most efficient optimizer among those

evaluated, yielding the best results for classifying data with

the MDCNN model.

Figure 7 Visual Representation of Accuracy Score Comparison Across
Various Optimizers

The bar chart in Figure 7 compares training and test accuracy

across four optimizers ADA Grad, RMS Prop, SGD, and

Adam. The accuracy score illustrates ADAM optimizer

outperforms others.

V Conclusion

In this paper introduces the Malware Detection

Convolutional Neural Network (MDCNN). The selected

novel approach transforms executable files into images for

analysis using image processing and deep learning

techniques. This method aims to uncover hidden patterns and

signatures that may elude traditional analysis methods. It also

discusses experimental results based on an image dataset

from VirusTotal, offering insights into the effectiveness of

the MDCNN model in enhancing malware detection and

response strategies. The MDCNN model achieves a high

accuracy rate of 96.83%, surpassing other deep learning

models. Comparative performance metrics confirm that

MDCNN is exceptionally good at identifying and

categorizing malware based on images associated with its

family.

REFERENCES

[1] Z. Zhang, G. Fu, F. Di, C. Li, and J. Liu, “Generative Reversible Data
Hiding by Image-to-Image Translation via GANs,” Secur. Commun.

Networks, vol. 2019, 2019, doi: 10.1155/2019/4932782.

[2] K. A. Zhang, A. Cuesta-Infante, L. Xu, and K. Veeramachaneni,
“SteganoGAN: High Capacity Image Steganography with GANs,”

2019, [Online]. Available: http://arxiv.org/abs/1901.03892

[3] R. Zhang, S. Dong, and J. Liu, “Invisible steganography via
generative adversarial networks,” Multimed. Tools Appl., vol. 78, no.

7, pp. 8559–8575, 2019, doi: 10.1007/s11042-018-6951-z.

[4] Z. Zhang, G. Fu, J. Liu, and W. Fu, "Generative information hiding
method based on adversarial networks," in The 8th International

Conference on Computer Engineering and Networks (CENet2018),

Springer International Publishing, 2020, pp. 261-270.
[5] Z. Fu, F. Wang, and X. Cheng, “The secure steganography for hiding

images via GAN,” Eurasip J. Image Video Process., vol. 2020, no. 1,

2020, doi: 10.1186/s13640-020-00534-2.
[6] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, "Image-

Based malware classification using ensemble of CNN architectures

(IMCEC)," Computers & Security, vol. 92, p. 101748, 2020.
[7] S. Yue and T. Wang, "Imbalanced malware images classification: a

CNN based approach," arXiv preprint arXiv:1708.08042, 2017.

[8] J. S. Luo and D. C. T. Lo, "Binary malware image classification using

machine learning with local binary pattern," in 2017 IEEE

International Conference on Big Data (Big Data), Boston, MA, USA,

Dec. 2017, pp. 4664-4667.
[9] S. C. Hsiao, D. Y. Kao, Z. Y. Liu, and R. Tso, "Malware image

classification using one-shot learning with siamese networks,"
Procedia Computer Science, vol. 159, pp. 1863-1871, 2019.

[10] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, "Malware

images: visualization and automatic classification," in Proceedings of
the 8th International Symposium on Visualization for Cyber Security,

July 2011, pp. 1-7.

[11] E. K. Kabanga and C. H. Kim, "Malware images classification using
convolutional neural network," Journal of Computer and

Communications, vol. 6, no. 1, pp. 153-158, 2017.

[12] A. Azab and M. Khasawneh, "Msic: malware spectrogram image
classification," IEEE Access, vol. 8, pp. 102007-102021, 2020.

[13] M. F. Rafique, M. Ali, A. S. Qureshi, A. Khan, and A. M. Mirza,

"Malware classification using deep learning based feature extraction
and wrapper based feature selection technique," arXiv preprint

arXiv:1910.10958, 2019.

[14] M. Sewak, S. K. Sahay, and H. Rathore, "Comparison of deep

learning and the classical machine learning algorithm for the malware

detection," in 2018 19th IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), June 2018, pp. 293-296.

[15] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, "Data

augmentation based malware detection using convolutional neural
networks," PeerJ Computer Science, vol. 7, p. e346, 2021.

[16] J. D. Kothari, "A case study of image classification based on deep

learning using TensorFlow," International Journal of Innovative
Research in Computer and Communication Engineering, vol. 6, no.

7, pp. 3888-3892, 2018.

[17] F. Ertam and G. Aydın, "Data classification with deep learning using
TensorFlow," in 2017 International Conference on Computer Science

and Engineering (UBMK), Antalya, Turkey, Oct. 2017, pp. 755-758.

[18] H. Benbrahim, H. Hachimi, and A. Amine, "Deep convolutional
neural network with TensorFlow and Keras to classify skin cancer

images," Scalable Computing: Practice and Experience, vol. 21, no. 3

[19] P. Kumar and U. Dugal, "TensorFlow based image classification
using advanced convolutional neural network," International Journal

of Recent Technology and Engineering (IJRTE), vol. 8, no. 6, pp.

994-998, 2020.
[20] S. S. Kadam, A. C. Adamuthe, and A. B. Patil, "CNN model for image

classification on MNIST and fashion-MNIST dataset," Journal of

Scientific Research, vol. 64, no. 2, pp. 374-384, 2020.
[21] N. Omer, A. H. Samak, A. I. Taloba, and R. M. Abd El-Aziz, "A novel

optimized probabilistic neural network approach for intrusion

detection and categorization," Alexandria Engineering Journal, vol.
72, pp. 351-361, 2023.

[22] Jose A., J. Arul Valan, and M. Mythily, “Performance Analysis of

Mesh based Multicast Routing protocol for Ad-hoc Wireless
Networks” International Engineering and Technology Publications

Journal of Communication Techniques, Vol. 2, No. 2, pp. 99-103,

2008.
[23] J. Anand, D. Srinath, R. Janarthanan, and C. Uthayakumar, “Efficient

Controller Area Network using Multihoming Protocol” Engineering

Today, Journal of Technology World, Vol. XI, Issue 10, pp. 125, -
129, Oct. 2009.

[24] Jose A., D. Srinath, R. Janarthanan, and C. Uthayakumar, “Efficient

Security for Desktop Data Grid using Fault Resilient Content
Distribution” International Journal of Engineering Research and

Industrial Applications (IJERIA), Vol. 2, No. VII, pp. 301-313, 2009.

[25] Thanzeem Mohamed Sheriff S., Venkat Kumar J., Vigneshwaran S.,
Aida Jones, and J. Anand, “Lung Cancer Detection using VGG NET

16 Architecture”, International Conference on Physics and

Engineering 2021, IOP Publishing, Journal of Physics Conference
Series, Vol. 2040, 2021.

View publication stats

https://www.researchgate.net/publication/389414796

