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Abstract— Cybercrime has been a worldwide issue since the 

internet's inception. The various online crimes that take place 

have an impact on the general public. The various forms of 

cybercrime committed online and around the world are always 

evolving due to the development of the internet. In the current 

digital age, when malware diversity and volume are increasing 

rapidly, new methods must be used to identify malware more 

quickly and accurately. Malware, which includes worms, 

trojans, spyware, and adware, can have serious repercussions, 

including financial losses, data breaches, and the interruption of 

essential services. Manual heuristic inspection in malware 

analysis is neither efficient nor effective in keeping up with the 

rapid spread of malware or in analyzing new infections. Deep 

learning enhances automatic malware variant detection and 

classification as it provides better categorization by building 

neural networks with more potentially different layers. They 

have been applied to automate investigations using static and 

dynamic analysis, where malware with comparable behaviors is 

grouped and unidentified malware is categorized into families 

according to how close it is to the other malware. In this research 

paper, we extract various feature sets from malware image files, 

including patterns, sizes, and textures, we utilized a novel 

approach, the Malware Detection Convolutional Neural 

Network (MDCNN) was employed to analyze malware in image 

files and the proposed model shows 96.83% accuracy rate in 

classifying the malware according to its family. The efficiency of 

the model is compared with other deep learning models and has 

shown the proposed model outperforms the other models. 
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I. INTRODUCTION  

Malware can spread through multiple formats, such as text 

files, PE headers, and images. Detecting malware in any of 

these forms is essential for protecting against cyber-attacks. 

This paper focuses on analyzing malware that is represented 

in image format. We present a graphical representation 

showing that the Trojan malware family accounts for 71% of 

newly emerged malware varieties from the internet [1]. 

Malware consists of malicious code and various system calls 

that indicate unauthorized access in different areas. 

Identifying and classifying malware image patterns are a 

challenging task for antivirus vendors. Within the field of 

cybersecurity, malware research typically focuses on 

executable files, using a variety of methods to identify and 

eliminate risks. Nevertheless, as cyber dangers change, 

attackers are turning to less conventional means of getting 

past defenses. Steganography, a specific technique used to 

embed spyware within image files, is a notable method. 

Through investigating the embedding of malware into 

images, researchers aim to enhance detection techniques, 

bolster digital forensics capabilities, and prevent data 

exfiltration. Gaining knowledge of these methods can assist 

in safeguarding sensitive data and improve defenses against 

Advanced Persistent Threats (APTs) [3]. Thus, identifying 

spyware in images is essential to preventing cyber-attacks 

and guaranteeing thorough security protocols. In this paper, 

we introduce an innovative method called Malware Detection 

Convolutional Neural Network (MDCNN) for analyzing 

malware. This approach involves converting executable files 

into image files, which are then analyzed using image 

processing and deep learning techniques. This transformation 

enables us to identify and classify malware, offering a new 

perspective compared to traditional analysis methods. By 

employing this technique, our goal is to uncover concealed 

patterns and signatures that might not be detected in 

traditional executable analysis, ultimately enhancing the 

efficiency of malware detection and response strategies. 

Section II discusses various authors' points on image analysis 

in malware. Section III provides an in-depth description of 

images related to malware and its various sections. An 

extensive knowledge of CNNs' use in malware investigation 

is given in Section IV, which also describes their design for 

analyzing image data. Section V introduces the innovative 

method MDCNN for analyzing malware within images, 

utilizing an image dataset sourced from VirusTotal. Section 

V provides the experimental outcomes of using the MDCNN 

model to analyze malware in image form. 

II. II LITERATURE REVIEW 

The author of this study proposes a unique Reversible Data 

Hiding (RDH) strategy called "GRDH" that is based on the 

GAN model in the article [1]. A strong image generator that 

could create realistic images was trained using the GAN 

model. The trained generator was then fed into the 

CycleGAN model to produce images with distinct semantic 

information. The author created a mapping relationship 

between noise and messages to embed messages. By teaching 

an extractor to eliminate noise from the final dense image, the 

message can be extracted. The suggested method's efficiency 

is demonstrated by the outcomes of the experiments. It is 

possible to disguise binary data in images by utilizing 

StegnoGAN, which was proposed by [2]. Several unique 

models have been proposed for image production. These 

models are the basic, residual, and dense encoder 



architectures. It is recommended that the Reed-Solomon bits-

per-pixel (RS- BPP) be utilized to better evaluate the 

embedded data capacity while using GAN models for 

steganography. An example of an ISGAN model was 

presented by [3] to disguise the greyscale image within the Y 

channel values of the color image. All of these components 

are included to improve the overall performance of the 

security system. In the ISGAN model, CNN-based layers are 

utilized by three of the networks that comprise the model. In 

a research article [4] proposed the use of ACGANs as a 

means of preventing the cover images from being altered 

while secret data was being transmitted. There is a set of 

labels and the image database that are taken into 

consideration when selecting the image that will be used for 

the cover. The sender uses a dictionary to map the intended 

message to the labels, and then they use the labels to select an 

image from the database to send data.  

The research paper [5] proposed the HiGAN model, which is 

based on GANs, as a technique for hiding images inside other 

images. A color image is concealed inside another color 

image using the HiGAN technique. Three sub networks are 

used by HiGAN to carry out GAN-based steganography. The 

color secret image must be hidden, and the encoder does this 

by using a correspondingly sized cover color image. 

Convolutional neural networks (CNNs) form the foundation 

of the novel ensemble architecture that the author [6] 

presented for effective malware detection, both packed and 

unpacked. By using a variety of CNN architectures, it was 

possible to extract features with better quality than with 

traditional methods. They increased the classification 

accuracy by obtaining generic features through the use of 

transfer learning. However, this approach has a disadvantage 

as it requires more time to execute. 

To help CNNs deal with skewed data and difficulties in 

malware picture classification, [7] devised a weighted 

softmax loss function. Through the implementation and fine-

tuning of this weighted softmax loss in the deep CNN model, 

the author achieved encouraging outcomes in the malware 

picture classification. 

The study in the article [8] suggests a method for classifying 

malware that makes use of convolutional neural networks 

(CNNs) and image processing. The process entails collecting 

Local Binary Pattern (LBP) features from malware and 

translating it into binary pictures. The infected images are 

first split into 3x3 grids, and then LBP is used to extract 

features that can be used to classify textures or patterns. 

The author of [9] used Siamese neural networks to classify 

malware images using one-shot image recognition. The 

outcomes of the experiment showed that this strategy worked 

better than the baseline techniques. According to empirical 

findings, Siamese network-based one-shot image recognition 

produced a test accuracy of 92.0%. 

 A classification technique based on common visual 

attributes is presented in this research. The author [10] used 

K-nearest neighbor (KNN) for classification and GIST 

filtering, which efficiently computes texture features for 

malware images using wavelet decomposition. With a total 

classification time of 1.4 seconds, the GIST feature extraction 

took 54 ms. Comparing the suggested method to previous 

classification and filtering algorithms, it is about 40 times 

faster. 

  [11] proposed a 98% accurate Convolutional Neural 

Network (CNN) model for classifying malware images. 

According to the experimental findings, this accuracy is 

comparable to the k-nearest neighbor (KNN) classification 

method. This strategy works better than several conventional 

classification techniques. 

To categorize malware into its appropriate family and 

differentiate it from benign files, the author presents Malware 

Spectrogram Image Classification (MSIC), which makes use 

of spectrogram images in conjunction with convolutional 

neural networks (CNNs). The malware file is shown as a 

spectrogram image in the first stage, and this image is used 

as input for the CNN classifier. CNN is used in the second 

stage to categorize the spectrogram images, and it works 

better than any other technique. 

A deep learning-based approach for malware detection 

(DLMD) that classifies various malware types utilizing static 

approaches was proposed [12]. The suggested method uses 

two different Deep Convolutional Neural Networks (CNNs) 

to extract features from byte data. The drawbacks of 

individual feature areas are lessened with the aid of this 

hybrid feature space. Eventually, a Multi-Layer Perceptron 

(MLP) is used to classify malware families. 

 The performance of Deep Neural Networks (with various 

architectures) and traditional machine learning Random 

Forest techniques for the classification of malware with 

various feature sets is compared in this article by [13]. 

Overall, it was shown that Random Forest performed better 

than DNN's multilayer architecture. RF and DNN achieved 

the highest accuracy of 99.78% and 99.21%, respectively. 

To identify malware families in a metamorphic malware 

environment, this paper [14] presents a deep convolutional 

neural network (CNN) model supplemented by image 

augmentation. The author's main contribution is the creation 

of a malware family classification model that uses CNNs to 

improve image classification accuracy and data augmentation 

to handle malware variants. Malware developers frequently 

utilize a variety of strategies to mask their destructive 

activity, and data augmentation is a useful tool for 

overcoming these difficulties. 

[15] Investigates picture classification with TensorFlow-

implemented deep neural networks (DNNs), or deep learning. 

TensorFlow is a well-known deep learning toolkit [16] used 

to classify the MNIST dataset. The impacts of different 

activation functions on classification performance were also 

compared in the study. On the test data, the ReLU activation 

function showed a classification accuracy of 98.43%. 

III. MALWARE DETECTION CONVOLUTIONAL NEURAL 

NETWORK(MDCNN) 

A) Malware Images 

Identifying visual anomalies in images generated from 

executable files can be more straightforward than examining 

their textual or binary content. When these files are 

transformed into grayscale images, each byte maps to a 

pixel's intensity, unveiling patterns and structures that might 

be obscured in their raw forms [17]. This visual approach can 

expose irregularities like unexpected patterns or sudden shifts 

in pixel intensity, which could signal the presence of 

malicious code. Malware often employs obfuscation 

techniques that leave unique visual signatures, which deep 

learning can be trained to detect [18][23]. By leveraging these 



grayscale images, cybersecurity systems can improve Trojan 

detection's precision and effectiveness. 

To analyze grayscale images effectively and classify them 

into different malware classes, an innovative technique 

named Malware-Detection Convolutional Neural Network 

(MDCNN) has been utilized. MDCNN is an abbreviation for 

Malware Detection Convolutional Neural Network and it is a 

new multi-class CNN architecture for the specific application 

of malware detection. It employs the virtues of CNNs 

[19][24] to automatically detect and retrieve hierarchically 

the features from images, and thus, it decreases the number 

of potential hypotheses and increases the accuracy of the 

prediction. The network architecture of MDCNN is designed 

to process the multi-dimensional data represented by 

grayscale images, capturing both spatial and intensity-based 

features that are crucial for distinguishing between different 

types of malwares [25]. The primary objective of using 

MDCNN is to perform multi-class classification of malware 

based on the visual features extracted from grayscale images. 

This approach enables cybersecurity analysts to categorize 

and prioritize threats based on their specific characteristics 

and behaviors, facilitating more targeted and effective 

mitigation strategies. By employing advanced deep learning 

techniques such as MDCNN, cybersecurity systems can 

enhance their ability to accurately classify and mitigate 

various malware, contributing to stronger defenses against 

cyber threats. 

 

Figure 1 Depicting Malware as an Image 

To convert a binary file into an 8-bit vector and then into 

grayscale images, begin by reading the file's binary content 

using Python's file handling capabilities in binary mode ('rb'). 

This involves opening the file and reading its contents into a 

variable. Next, use NumPy to convert the binary data into an 

array of 8-bit integers (uint8), where each byte in the binary 

file is equivalent to a pixel's intensity value ranging from 0 to 

255. This array serves as the foundational 8-bit vector 

representation of the grayscale image. Reshape the 8-bit 

vector into a 2-dimensional array that reflects the desired 

dimensions of the grayscale image. This step involves 

determining the width and height of the image based on the 

binary file's size and structure. With the reshaped array ready, 

you can use libraries such as PIL (Python Imaging Library) 

to create a grayscale image (mode='L'). Finally, save the 

generated grayscale image in a suitable format like PNG or 

JPEG. Figure 1 shows the visual conversion of an executable 

file to a grey-scale image. This conversion process enables 

visual representation and analysis of binary data, facilitating 

tasks such as malware detection through image-based 

machine learning approaches or simple visual inspection by 

cybersecurity analysts [20]-[22]. Figure 2 displays a number 

of grayscale images that depict malware executable files that 

have been transformed. The visual comparison between 

various malware kinds is made possible by the inclusion of 

samples from the benign class and the five other malware 

families in these images. 

 
 

Figure 2 Malware Greyscale Images 

The data for this analysis was sourced from Virus Total. Out 

of the 7630 executable files obtained, all were converted into 

grayscale images for malware analysis. After pre-processing, 

6985 high-quality grayscale images were selected for further 

analysis. Figure 3 shows the pictorial representation total 

number of malware present in each family.  

 

 

 

Figure 3 Percentage Distribution of Images Across Malware Families and 
Benign Files 

The dataset used for image-based malware analysis is 

organized into several folders, each containing a distinct 

number of files that represent different types of malware and 

benign samples. These folders include Locker1 with 231 



files, Mediyes1 with 1015 files, Winwebsec1 with 3090 files, 

Zbot1 with 1498 files, Zeroaccess1 with 486 files, and 

Benign2 with 665 files as shown in the above figure. 

B. Unveiling the Architecture of MDCNN: A Deep Dive 

The method of analyzing and categorizing malware utilizing 

greyscale images generated from ransomware executables 

and a Malware Detection Convolutional Neural Network 

(MDCNN) model is depicted in the architecture diagram 

above. Malware Detection Convolutional Neural Network 

(MDCNN) used for image categorization. It is built using the 

Keras framework and employs several of layers to alter the 

input images into output class probabilities. Convolutional 

layers, pooling layers, flattening layers, fully connected 

layers, and dropout layers are among the layers in the design, 

and each has a distinct function in the training process.  

 

 
 

Figure 4 Architecture of MDCNN Model 

 

Figure 4 shows the architectural diagram of the proposed 

model MDCNN. First, executable files are transformed into 

malware binaries, which are subsequently transformed into 

greyscale pictures. The analysis of visual patterns in the 

malware is made possible by the fact that each pixel in these 

pictures corresponds to a byte in the binary file. These 

greyscale pictures are preprocessed using an image generator. 

Techniques including scaling, normalization, and data 

augmentation may be used in the preprocessing. The 

completion of the pretraining procedure is verified by the 

decision point. If not, the procedure repeats, creating new 

images and undergoing preprocessing until the pretraining is 

finished. An MDCNN model receives the greyscale images 

that have been preprocessed. This model probably consists of 

several convolutional layers intended to extract patterns and 

spatial hierarchies from the images. The model is composed 

of at least three hidden layers, each of which introduces non-

linearity through the use of ReLU (Rectified Linear Unit) 

activation functions, allowing the MDCNN to learn 

complicated patterns. A Sparse Categorical Cross-entropy 

loss function is applied to the training process to quantify the 

difference between the predicted and real labels. For 

classification jobs where the output labels are integers, this 

loss function is appropriate.  

Following training, the model is assessed by grouping images 

into families based on the type of malware they include (e.g., 

Benign, Locker, Zbot). To verify that the model has learned 

to distinguish between various malware families, its 

performance is assessed to determine its ability to classify 

new images. Overall, the architecture outlines a process 

where malware binaries are converted into grayscale images, 

preprocessed, and then fed into an MDCNN for training and 

classification. The model MDCNN is capable of classifying 

the malware based on the visual patterns identified in the 

grayscale images, using deep learning techniques with an 

accuracy score of 96.83%. 

 

c) Pseudocode MDCNN model 
• Input: Malware Images 

• Output: Predicting the images and the family of Malware 

Step 1: Initialize and Import the necessary Libraries 

Step 2: Load the dataset and convert to greyscale images. 

Step 3: Apply Pre-processing using the image generator on all 

the images 

Step 4: Split the dataset into training and validation 

Step 5: Input the dataset to the chosen MDCNN model for 

training 

Step 6 : Call convolution_multiple_filters(I, filters, S, P) 

Step 7: Apply Adam Activation and Sparse cross Entropy loss 

function on the features extracted 

Step 6: Model classifies and Predicts the output. 

Step 7: Test the model 

Step 8: Model Classify the image to its appropriate Malware 

Family 

 

Algorithm for Convolutional layer to combine the features 

extracted 

• Input:  Image I, Filters F, Stride S, Padding P 

• Output: Extract the features and combine it 

Algorithm convolution_multiple_filters (I, filters, S, P) 

Step 1: Initialize I, filters, S, P 

Step 2:   if P > 0: 

padded_image = np. zeros((I.shape[0] + 2 * P, I.shape[1] + 2 * P)) 

padded_image [P:-P, P:-P] = I 

I=padded_image 

 Step 3: //Output dimensions 

H_out = (I. shape [0] - filters [0]. shape [0] + 2 * P) / (S + 1) 

W_out = (I. shape [1] - filters [0]. shape [1] + 2 * P) / S + 1 

Step 4: Set feature_maps = np.zeros((H_out, W_out)) 

Step 5:   for k, F in enumerate(filters): 

for i in range(H_out): 

for j in range(W_out): 

 R = I [i*S : i*S + F. shape[0], j*S: j*S + F.shape[1]] 

feature_maps[k][i, j] =  np.sum(R * F) 

Step 6: set feature_maps = np.maximum(0, O)  

Step 7:   combined_output = np.stack(feature_maps, axis=-1) 

return feature_maps, combined_output 

 

IV Result and Analysis of MDCNN 

 

The standard metrics used to assess the effectiveness of 

models for classification are accuracy, precision, and F1 

score. 

Accuracy:  

The percentage of accurately identified events—both true 

positives and true negatives is known as accuracy. The 



accuracy score evaluates how well the model predicts the 

dataset's categories. A higher accuracy rate suggests that the 

model is more frequently producing accurate predictions. The 

formula for calculating the accuracy is given by equation 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑡𝑖𝑣𝑒
 

        (1) 

Precision 

Precision gauges how well a model prevents false positives 

or the incorrect classification of harmless files as malicious. 

Improved precision results in fewer false positives, which is 

essential for applications due to misidentifying innocuous 

files as malware might cause needless warnings or actions. 

The formula for calculating the precision is given by equation 

2. 
                  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                        (2) 

 

F1 Score 

The F1 score provides an appropriate ratio between precision 

and recall by taking the harmonic mean of these two 

parameters. The F1 score is at its lowest at 0 and its highest 

at 1 (perfect recall and precision). It provides a single statistic 

for assessing model performance by striking a compromise 

between recall and precision. F1 score and recall are 

calculated by Equation 3 and Equation 4. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑋(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                            (4) 

 

The following table presents the performance metrics of the 

MDCNN model on the test data, derived from the 

computations outlined above. 
 

Table 1 Comparison of Performance Score of MDCNN 

 

Comparison of Performance Score of MDCNN for Malware 

Analysis with Deep Learning Model in Percentage 

Model Accuracy F1 Score Recall Precision 

VGG16 94.2 93.23 91 94.5 

INCEPTION 93.1 92.14 89 88.6 

MDCNN 96.83 97.56 96.78 97.3 

RESNET 94.56 94.4 92 93.2 

 

The MDCNN model is compared with the standard CNN 

model to show its performance level. Table 1 illustrates the 

comparative performance levels of various CNN models. The 

accompanying table details the accuracy, F1 score, and recall 

values achieved by each model. The VGG16 model, 93.1% 

for the Inception model, 94.56% for the ResNet model, and 

96.83% for the novel MDCNN model have the highest 

accuracy scores. Comparably, VGG16, Inception, ResNet, 

and MDCNN had F1 scores of 93.23%, 92.14%, 94.4%, and 

97.56%, respectively. Recall ratings for VGG16 are 91%, 

Inception is 89%, MDCNN is 96.83%, and ResNet is 92%. 

The generated MDCNN model performs better than the 

others based on performance criteria. Figure 5 shows the 

graphical representation of this comparison. Of these models, 

the MDCNN exhibits the best performance on all metrics, 

with the best accuracy and F1 score compared to the typical 

CNN models assessed.  
 

 
 

Figure 5 Comparison of Performance Score of MDCNN 

 

This indicates that the MDCNN model effectively balances 

precision and recall, achieving robust performance in 

classifying data. The results highlight MDCNN's capability 

to outperform traditional CNN architectures like VGG16, 

Inception, and ResNet in tasks requiring detailed 

classification and recognition tasks. This underscores its 

suitability for applications demanding high accuracy and 

reliability in pattern recognition and classification. Figure 5 

shows the graphical representation of the proposed model 

MDCNN performance based on various metrics. 

To assess the model's performance in detail, accuracy and loss 

are key metrics. The proportion of accurately predicted 

occurrences on the training dataset is known as training 

accuracy. Elevated training accuracy indicates that the model 

is interpreting the training data efficiently and gathering up 

on its patterns. Although a high level of training accuracy is 

ideal, it does not ensure that the model will function 

effectively when exposed to new data. Overfitting may occur 

if the model becomes too specialized in the training data, 

failing to generalize to new, unseen data. Comparably, 

validation accuracy calculates the proportion of instances on 

the validation dataset which is different from the training 

dataset that is properly predicted. The accuracy ratings of 

both validation and training are evaluated to show whether or 

not the model is well-generated or whether over fitting is 

present. This helps determine the model's effectiveness on 

new data during the process of execution. Based on this, the 

hyper parameters can be adjusted appropriately and evaluate 

the model's efficiency. The dataset's error between real and 

predicted values is scaled using the loss function. For 

instance, the categorical cross entropy loss function is mostly 

used in classification problems. A lower validation loss 

indicated that the model has performed well on new data, 

helping to select the best model for training while preventing 

over fitting and improving its ability to generalize. To reveal 

how well the chosen model performs on the unknown data, 

test loss analyses its effectiveness. Evaluating the model's 



performance in practical situations is helpful. 

Like validation loss, lower test loss also demonstrates the m

odel's efficacy and reliability by showing that the model is p

roducing reliable forecasts on unseen data. MDCNN is 

robust and efficient in analyzing malware in image datasets, 

as demonstrated by the accompanying diagram displays the 

model's loss and accuracy score in the diagrammatic 

representation. The following Figure 6 shows the comparison 

diagram of validation accuracy and training accuracy to show 

the efficacy and robustness of the model MDCNN.  

 

Figure 6 Comparison of Training and Validation Accuracy, Training and 

Validation Loss 

The figure demonstrates that as the number of epochs 

increases, the accuracy reaches its maximum point, while the 

loss gradually drops, approaching zero with each epoch. This 

trend indicates that the model is performing well as it 

continues to improve and minimize errors during the training 

process. An important factor in determining a model's 

efficiency is its optimizer. Every optimizer has distinct 

qualities that affect the model performance and how it is 

trained. Concerning this, choosing the best optimizer is 

challenging but necessary for attaining precise results. 

ADAM (Adaptive Moment Estimation) 

Momentum and Adaptive learning rates techniques are used 

by ADAM optimizers to update model parameters. Adapting 

the learning rates dynamically based on the magnitude and 

diversity of the gradients, this technique enables swift and 

accurate convergence. The ADAM optimizer achieves faster 

convergence and better performance by managing complex 

and varied data patterns. 

ADADELTA (Adaptive Delta) is an optimization algorithm 

that aims to address some limitations of traditional gradient 

descent methods by adapting learning rates based on recent 

gradient information. Using a moving average of the squared 

gradients, this optimizer continuously alters the learning rate 

for all the attributes. This approach helps to stabilize and 

accelerate convergence by reducing the dependence on the 

initial learning rate and making the optimization process 

more robust to different scales of parameters. While 

ADADELTA is effective in various training scenarios, the 

ADAM optimizer is often preferred for tasks such as malware 

analysis. ADAM combines the adaptive learning rates and 

momentum from ADADELTA with additional techniques to 

enhance convergence and performance, making it 

particularly suitable for complex and demanding analyses. 

Root Mean Square Propagation (RMSprop) is intended to 

enhance training efficiency for deep learning models. It 

functions by scaling the learning rate using the mean of 

squared gradients and modifying the learning rate for each 

parameter according to the magnitude of recent gradients. 

This approach helps stabilize and accelerate convergence, 

especially in scenarios with noisy or sparse gradients. While 

RMSprop is effective in many training contexts, the ADAM 

optimizer often provides even better performance, 

particularly for tasks like malware analysis. ADAM builds on 

RMSprop by combining its adaptive learning rates with 

momentum, offering improved outcomes and increased 

convergence for intricate analysis. 

Stochastic Gradient Descent (SGD) modifies the 

attribute of the model by repeatedly shifting in the direction 

of the loss function's negative gradient. A small set of data 

is used to expedite computation and accelerate convergence. 

While SGD is effective due to its simplicity, the ADAM 

optimizer often offers superior performance, particularly for 

malware analysis. ADAM improves upon SGD by 

incorporating adaptive learning rates and momentum, which 

dynamically adjust the learning rates and track moving 

averages of gradients, resulting in more effective 

convergence and enhanced performance for complex tasks. 

Compared to the aforementioned optimizers, our research 

model MDCNN utilizes the ADAM optimizer due to its 

adaptive properties and faster convergence rates. ADAM's 

ability to dynamically adjust learning rates and its effective 

handling of gradients make it particularly suited for 

optimizing complex models, leading to more efficient 

training and improved performance in our malware analysis. 

 

Comparing Training Accuracy and Test Accuracy using 

Various Optimizers: 

Our research compared the accuracy score with various 

optimizers. Table 2 gives a detailed analysis of accuracy 

using various optimizers. The AdaGrad optimizer achieves a 

training accuracy of 96.7% and a test accuracy of 96.6%, 

indicating its effectiveness in both training and evaluating the 

model. RMSprop, another optimizer, results in a training 

accuracy of 95.3% and a slightly lower test accuracy of 

94.4%, suggesting it may be less effective in generalizing 

from the training data compared to AdaGrad. The SGD 

optimizer shows a training accuracy of 95.24% and a test 

accuracy of 95.3%, demonstrating consistent performance 

across both training and testing phases, though slightly lower 

than AdaGrad and ADAM. In contrast, the ADAM optimizer 

achieves the highest performance with a training accuracy of 

96.83% and a test accuracy of 96.82%. 

 
Table 2 Accuracy-based Comparison of Different Optimizers used 

in MDCNN Model 

 



Comparison Training Accuracy and Test Accuracy 

using various Optimizer 

Optimizer Training 

Accuracy % 

Test Accuracy 

% 

Ada Grad 96.7 96.6 

RMS Prop 95.3 94.4 

SGD 95.24 95.3 

ADAM 96.83 96.82 

 

This consistency in high accuracy across both training and 

test datasets highlights ADAM's superior capability in 

effectively training the MDCNN model. Overall, ADAM 

proves to be the most efficient optimizer among those 

evaluated, yielding the best results for classifying data with 

the MDCNN model.  

 
 

Figure 7 Visual Representation of Accuracy Score Comparison Across 
Various Optimizers 

 

The bar chart in Figure 7 compares training and test accuracy 

across four optimizers ADA Grad, RMS Prop, SGD, and 

Adam. The accuracy score illustrates ADAM optimizer 

outperforms others. 

 

V Conclusion 

In this paper introduces the Malware Detection 

Convolutional Neural Network (MDCNN). The selected 

novel approach transforms executable files into images for 

analysis using image processing and deep learning 

techniques. This method aims to uncover hidden patterns and 

signatures that may elude traditional analysis methods. It also 

discusses experimental results based on an image dataset 

from VirusTotal, offering insights into the effectiveness of 

the MDCNN model in enhancing malware detection and 

response strategies. The MDCNN model achieves a high 

accuracy rate of 96.83%, surpassing other deep learning 

models. Comparative performance metrics confirm that 

MDCNN is exceptionally good at identifying and 

categorizing malware based on images associated with its 

family. 
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