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ABSTRACT
This study presents an improved technique that uses many machine-learning models to estimate the compressive 
strength of concrete. The goal of the project is to increase the precision of strength predictions based on the 
age and composition of concrete mixes. Cement, fly ash, water, superplasticizer, coarse and fine aggregate, 
and sample age are among the materials. Megapascals (MPa) are used to quantify compressive strength. To 
determine the connections between mix proportions, age, and strength, a variety of blends were examined. 
Machine learning techniques including Random Forest, XGBoost, AdaBoost, Bagging, Support Vector 
Regression, and Linear Regression were used. The efficiency of the model was assessed using performance 
indicators such as accuracy, R-squared (R2), Mean Absolute Error (MAE), and Mean Squared Error (MSE). 
With an MAE of 2.2, MSE of 10.5, R2 of 0.94, MAPE of 8.5, RMSE of 3.25, and accuracy of 0.92, XGBoost 
(optimized) performed the best. This model performed noticeably better than others, highlighting how machine 
learning may improve predictions of compressive strength and optimize the composition of concrete, thus 
promoting the fields of materials science and civil engineering.
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1. INTRODUCTION
Concrete is one of the most extensively used building materials globally, celebrated for its asset, durability, and 
versatility [1]. Its mechanical properties, particularly compressive strength, are crucial for the structural integrity 
of various civil engineering applications [2]. As urbanization accelerates and construction demands increase, 
optimizing concrete formulations to enhance performance has become paramount [3]. Outmoded approaches for 
assessing the compressive asset of concrete involve extensive experimentation, which can be time-consuming 
and costly [4]. Therefore, the integration of machine learning (ML) techniques into concrete research presents 
a promising avenue for improving prediction accuracy and reducing the reliance on empirical testing [5]. The 
compressive strength of concrete is inclined by various factors, including the proportions of its constituents, the 
curing process, and the age of the concrete [6]. 

Common ingredients in concrete mixes include cement, water, coarse aggregate, fine aggregate, and 
supplementary products such as fly ash and superplasticizers [7]. Each of these components plays a vital role in 
determining the overall performance of the concrete [8]. For instance, the use of fly ash not only improves work-
ability but can also enhance long-term strength and durability by mitigating shrinkage and reducing permeability 
[9]. Similarly, superplasticizers are added to improve the flow characteristics of the concrete mix, allowing for 
better compaction without increasing water content, which is critical for achieving optimal strength [10]. Given 
the complexity of concrete’s behavior and the numerous variables affecting its properties, machine learning 
offers a powerful tool for modeling and prediction [11]. 

Utilizing algorithms that can learn from data patterns, researchers can develop predictive models that 
accurately estimate compressive strength based on input variables [12, 13]. This research seeks to investigate 
the performance of several ML algorithms, such as Linear Regression (LR), Support Vector Regression (SVR), 
AdaBoost, Bagging, Random Forest, and XGBoost, in forecasting the compressive strength of material [14]. 
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The motivation behind this investigate is to evaluvate the predictive capacity of concrete strength models by 
employing advanced ML techniques [15, 16]. Previous studies have shown that machine learning can yield more 
reliable predictions compared to traditional statistical methods, thereby facilitating better decision-making in 
concrete mix design and optimization [17]. 

Moreover, as the construction industry increasingly adopts digital technologies and data-driven 
approaches, the relevance of machine learning applications in concrete technology is more critical than ever 
[18, 19]. This study’s objectives include collecting and analyzing a comprehensive dataset that encompasses 
various concrete mix proportions, supplementary materials, and curing times [20, 21]. By leveraging machine 
learning, the research seeks to identify the most influential factors affecting compressive strength and develop a 
robust predictive model [22]. The ultimate goal is to provide a framework for optimizing concrete formulations 
that can contribute to safer, more sustainable construction practices [23–25]. 

The importance of this study extends beyond academic interest; it has practical implications for engineers 
and construction professionals [26]. As building codes and regulations evolve to emphasize sustainability and 
resilience, developing concrete with optimized performance characteristics will be essential [27]. Machine 
learning’s ability to process vast datasets and uncover intricate relationships will enable the industry to adopt 
innovative materials and methods, that align with contemporary sustainability goals [28]. This study that goals 
to connection the break between traditional concrete science and modern computational techniques, offering 
insights that can drive advancements in concrete technology and application [29]. 

Machine learning (ML) models have revolutionized the field of materials science and civil engineering 
by offering precise and reliable predictions of complex material behaviours [30]. These models excel in ana-
lyzing large datasets, identifying hidden patterns, and providing data-driven insights that traditional statistical 
methods often overlook [31]. ML algorithms like RF, XGBoost, and SVR can adapt to nonlinear relationships 
and interactions among variables, enhancing the accuracy of predictions [32]. Furthermore, ensemble methods 
combine the strengths of multiple models to reduce errors and improve robustness, making them invaluable 
tools for optimizing material compositions and predicting properties such as concrete compressive strength [33]. 

The aim of this study is to enhance the accuracy of compressive strength predictions for concrete using 
advanced machine learning techniques [34]. The primary goal is to develop predictive models that account for 
the nonlinear relationships between mix components—cement, fly ash, water, superplasticizer, aggregates—and 
the age of concrete [35]. By leveraging models such as XGBoost, RF, and AdaBoost, the study seeks to identify 
optimal compositions and improve material performance [36]. This research aims to bridge gaps in predictive 
accuracy compared to traditional methods, ultimately contributing to advancements in materials science and 
promoting data-driven innovations in civil engineering [37].

This research aims to investigate the possible of ML systems in forecasting the compressive strength of 
concrete by analyzing various mix designs and material properties [38, 39]. The specific research objectives are 
as follows:

2. DATA COLLECTION AND DATASET COMPILATION
To compile a comprehensive dataset encompassing a wide range of concrete mixes, including varying proportions 
of Growing older, particles of fly ash, water, asphalt, the ingredient, and a mixture of fine and coarse aggregate 
[20]. To ensure the dataset represents diverse environmental conditions and curing methods to enhance the gen-
eralizability of the machine learning models [17]. 

The data collected for this study includes experimental data on the compressive strength of concrete [40]. 
The dataset comprises various concrete mix proportions, including the types and quantities of materials such as 
cement, fly ash, water, superplasticizer, coarse and fine aggregates, and sample age [41]. The data also includes 
the corresponding compressive strength values, measured in Megapascals (MPa), for each mix. This data is 
used to train and test machine learning models for predicting concrete strength based on the mix composition 
and age [42].

Exploratory Data Analysis (EDA): Perform a comprehensive exploratory data analysis to uncover 
patterns, trends, and relationships between the input variables (mix compositions) and the target variable (com-
pressive strength). Use graphical visualizations, such as scatter plots, histograms, and heatmaps, to gain a clearer 
insight into the correlations and distributions within the dataset [30]. 

Exploratory Data Analysis (EDA) was integral in understanding the relationships between concrete 
material components and compressive strength. Through statistical visualization techniques such as scatter 
plots, correlation matrices, and box plots, the variations in cement, fly ash, water, superplasticizer, aggregates, 
and sample age were analyzed. EDA revealed key patterns and nonlinear dependencies in the dataset, such as the 
influence of water-to-cement ratio on strength. It also helped identify outliers and data distribution trends, which 
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informed the preprocessing and feature engineering stages. This systematic analysis ensured robust model input, 
enhancing the forecasting accuracy of ML algorithms.

Feature Manufacturing and Collection: To identify and generate relevant structures that can improve the 
forecasting accuracy of the models, such as interaction terms or derived variables. To employ feature selection 
techniques to determine the most significant variables affecting compressive strength and eliminate redundant 
or irrelevant features [31]. 

Implementation of Machine Learning Algorithms: To apply various ML - algorithms, including LR, 
SVR, AdaBoost, Bagging, Random Forest, and XGBoost [32]. To optimize hyperparameters for each model to 
enhance their performance in predicting compressive strength [33]. 

Model Assessment and Presentation System of measurement: To estimate the presentation of each ML 
algorithm using appropriate metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), 
R-squared (R2), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and accuracy 
[34]. To conduct cross authentication to ensure the robustness and dependability of the model forecasts.

Comparison assessment of ML Models: To perform a qualified analysis of the results obtained from 
different ML-algorithms to categorize the most effective method for forecasting compressive strength [35]. To 
analyse the assets and weaknesses of each model based on their presentation metrics and predictive accuracy.

Development of a Predictive Framework: To develop a user-friendly predictive framework or software 
tool that can be utilized by engineers and researchers for estimating compressive strength based on input concrete 
mix parameters. To provide guidelines for optimizing concrete formulations based on the insights gained from 
the machine learning models [36]. 

Recommendations for Practical Applications: To offer recommendations for integrating machine learning 
techniques into concrete mix design practices in the construction industry. To discuss the implications of the 
findings for improving construction efficiency, sustainability, and structural performance.

Contribution to Future Research: To donate to the body of information on the submission of ML in civil 
engineering and materials science, laying the groundwork for future studies exploring more advanced algorithms 
or additional performance metrics [37]. To suggest avenues for further research, including the exploration of 
other performance indicators (e.g., tensile strength, durability) using machine learning methodologies. By 
achieving these objectives, this study aims to enhance the understanding of the parameters indicating compres-
sive strength in concrete and promote the effective use of machine learning for predictive modelling in civil 
engineering applications [38]. Table 1 shows ML - Models Accepted to approximation concrete compressive 
strength.

Table 1: ML - Models accepted to approximation concrete compressive strength.

SI. NO ML MODELS NAME DATASET YEAR
1 Artificial Neural Network (ANN) [3] 800 2021
2 Support Vector Regression (SVR) [8] 1200 2020
3 Decision Tree Regression (DTR) [10] 900 2021
4 Gradient Boosting Machine (GBM) [9] 675 2022
5 K-Nearest Neighbors (KNN) [2] 450 2020
6 Extreme Gradient Boosting (XGBoost) [16] 1050 2021
7 Genetic Programming (GP) [25] 330 2019
8 AdaBoost Regression [32] 540 2020
9 Hybrid Particle Swarm Optimization (PSO) with SVR [14] 220 2021
10 Long Short-Term Memory (LSTM) Neural Networks [17] 780 2022
11 Deep Neural Network (DNN) [8] 950 2019
12 Fuzzy Inference System (FIS) [12] 310 2020
13 Bayesian Ridge Regression [18] 640 2021
14 Random Forest Regression (RFR) 35] 850 2018
15 Ensemble Learning (Bagging, Boosting, RF, XGBoost) [20] 1000 2020

Non-ensemble models: MLR and SVR Ensemble models: AdaBoost, Random Forest 
Regressor, XGBoost Regressor, and Bagging Regressor

Present 
research
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Background on Machine Learning Algorithms: ML systems have revolutionized the field of civil 
engineering by offering powerful tools for extrapolative modelling and optimization. In concrete technology, ML 
is utilized toward model complex relationships between input variables such as material properties, mix com-
positions, and output parameters like compressive strength. These processes learn from historical data, uncover 
designs, and use them to predict future behaviour with higher accuracy than traditional statistical models.

Machine learning algorithms can be approximately considered into two types: non-ensemble models 
and ensemble models [39]. Non-ensemble models rely on a single algorithm to predict outcomes, while ensem-
ble models associate the forecasts of multiple base models to improve overall presentation and toughness in  
figure 1 and 2.

3. NON-ENSEMBLE MODELS
Non-ensemble models, on the other hand, rely on a single model to make predictions. These models, such 
as SVR and LR, focus on finding the optimal function or decision boundary for forecast. Multiple Linear 

Figure 1: Sigmoid function in a conventional neural network model.

Figure 2: Technique of implementing machine learning.
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Regression (MLR): MLR is a widely applied and straightforward machine learning technique that models the 
connection between a dependent variable (compressive strength) and several self-determining variables (such 
as cement content, water content, etc.). MLR presumes a linear association between the input features and the 
output variable [40]. 

The equation for MLR is given as: 

	 Y X X nXn� � � � � ��� � � �0 1 1 2 2 ... 	 (1)

Where, Y = predicted compressive strength (dependent variable), β0​ = intercept β1, β2,…, βn​ = coefficients of 
the independent variables, X1, X2,…, Xn​ = independent variables (input features such as cement, water, etc.), 
and, ϵ = error term or residual.

Application in Concrete: MLR can be applied to predict the compressive strength of concrete by fitting 
the relationship between material proportions (cement, water, aggregates, etc.) and strength.

SVR: It is a supervised learning algorithm derived from Support Vector Machines (SVM). It performs 
regression analysis by finding the best-fit hyperplane that minimizes the error within a specified threshold. SVR 
is well-suited for handling non-linear relationships by utilizing different kernel functions.

SVR minimizes the following objective function:
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Where, W = weight vector, C = regularization parameter that controls the trade-off between minimizing training 
error and model complexity, Lϵ​ = epsilon-insensitive loss function, yi​ = real value of the mark variable, and,  
f(xi​) = predicted value using the model.

Application in Concrete: SVR is effective for predicting compressive strength when the relationship 
between concrete properties and strength is non-linear. It can be fine-tuned using dissimilar kernel functions 
(e.g., linear, polynomial, RBF).

Ensemble Models: Ensemble models syndicate the forecasts of several separate models to improve 
correctness and reduce overfitting. These models, such as RF, XGBoost, and AdaBoost, leverage the strengths 
of different learning algorithms and provide more robust predictions by aggregating the results from multiple 
decision trees or learners. Ensemble models improve prediction accuracy by combination the outputs of multiple 
base models. They reduce overfitting and variance, making them more robust than individual models.

AdaBoost (Adaptive Boosting): AdaBoost is an collaborative learning performance that sequentially 
trains multiple weak learners, typically decision trees. Each subsequent learner focuses on instances that were 
previously misclassified, thereby “boosting” the model’s performance. The final estimate is a subjective sum of 
the forecasts of each weak learner 

AdaBoost’s prediction function can be expressed as:

	 F x mhm x
m

M
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Where, M = number of weak learners, αm​ = weight assigned to the mth weak learner, and hm​(x) = prediction 
of the mth weak learner.

Application in Concrete: AdaBoost can improve the accuracy of compressive strength predictions by 
focusing more on samples where prior models had higher errors, thus refining the overall model performance.

Random Forest (RF): Random Forest is an ensemble technique that builds numerous decision trees 
during the training process. Each tree is qualified on a casually chosen subset of the dataset, and in regression 
tasks, the final prediction is obtained by averaging the outputs of all the trees. This method reduces variance and 
improves accuracy by aggregating the predictions from multiple trees.

For deterioration tasks, the forecast is the average of the individual tree predictions:
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N
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Where, N = number of trees and, hi​(x) = prediction from the ith tree
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Application in Concrete: Random Forest is useful for predicting compressive strength as it can handle 
both linear and non-linear relationships, and it is resistant to overfitting even with large datasets.

XGBoost (Extreme Gradient Boosting): XGBoost is an optimized implementation of the gradient 
boosting algorithm, designed to be efficient and highly accurate. It combines multiple weak learners (decision 
trees) and minimizes the loss function through gradient descent. XGBoost introduces regularization to prevent 
overfitting and uses techniques such as tree pruning and parallel computation to improve performance. 

The objective function in XGBoost is:

	 minimize � � �
� �� �L yi y i fk
i

n

k

K
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1 1 	 (5)

Where, L(yi​, y^​i​) = loss function between the actual and predicted values, Ω(fk​) = regularization term for the 
complexity of the model.

Application in Concrete: XGBoost is highly effective for predicting compressive strength due to its 
aptitude to handle multifaceted and non-linear associations between the input features and the target variable, 
while also being computationally efficient.

Bootstrap Aggregating: Bagging, or Bootstrap Aggregating, is an collaborative technique that improves 
model constancy and accuracy by training numerous base models (typically decision trees) on dissimilar subsets 
of the training data, sampled with replacement. The predictions of each model are then aggregated to produce 
the final result. This method reduces variance and overfitting.

The bagging forecast is the average of predictions from all base models:
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 Where, MMM = number of base models and, hi​(x) = prediction of the ithi^{th}ith base model
Application in Concrete: Bagging can be used to improve compressive strength predictions by reducing 

variance and enhancing model robustness through the aggregation of multiple decision trees. Both non-ensemble 
and ensemble ML - models offer valuable approaches for forecasting the CS of material. While non-ensem-
ble models like MLR and SVR provide simple yet effective predictions, ensemble models such as AdaBoost, 
Random Forest, XGBoost, and Bagging enhance prediction accuracy by combining multiple learners and reduc-
ing model errors. These methods, when applied appropriately, can greatly improve the design and optimization 
of concrete mixes in construction projects.

Non-ensemble models, such as SVR and LR, rely on individual algorithms for predictions. In contrast, 
ensemble models, like RF, XGBoost, and AdaBoost, combine predictions from multiple base models to improve 
accuracy and reduce bias or variance. The separation was necessary to analyze their distinct capabilities in 
predicting compressive strength. Ensemble methods generally outperform non-ensemble models due to their 
capability to detention complex data patterns and enhance robustness. This distinction allowed us to evaluate 
their comparative effectiveness, demonstrating the superior performance of optimized ensemble models like 
XGBoost in this study.

A study using K-Fold Cross-Validation and arithmetical investigation: In predictive modelling, statistical 
analysis plays a crucial role in evaluating model performance, validating assumptions, and ensuring the reliability 
of results. In this study, statistical methods were employed to analyse the CS forecast of concrete using ML - 
algorithms. To ensure robust evaluation and avoid overfitting, K-fold cross-validation was used as the primary 
validation technique. Below are the details of the statistical analysis and cross-validation process.

The verification and validation of the 13 machine learning models were performed using rigorous 
evaluation metrics and cross-validation techniques. Models were trained on a dataset comprising concrete mix 
components and tested on unseen data to assess generalization. Performance was quantified using metrics such 
as R2, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
Mean Absolute Percentage Error (MAPE). K-fold cross authentication was active to minimize overfitting and 
ensure reliability. XGBoost emerged as the best-performing model with superior accuracy and error metrics, 
confirming the robustness and validity of the approach.

Arithmetical Analysis: The statistical analysis in this study involves the calculation of key performance 
metrics, such as:



ELLAPPAN, P.; KESHAV, L.; RAJA, K.C.P., et al., revista Matéria, v.30, 2025

MAE: MAE measures the regular magnitude of the complete errors between the forecast and actual 
values. It is a linear score, which means all the individual differences are equally weighted.

	
MAE

n
yi y i

i

n
� �

��1
1
| ^ |

	
(7)

Where, yi​ = actual value, y^​i​ = predicted value, and n = number of data points.
MSE: MSE evaluates the average squared differences between actual and predicted values, giving more 
weightiness to larger errors. It is useful for classifying models that have large prediction errors.
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RMSE: RMSE is the four-sided basis of the MSE and delivers a more explainable degree of prediction 
mistake. It retains a similar unit as the board flexible, making it easier to compare with the actual data.

	 RMSE MSE= 	 (9)

R2: R2 represents the percentage of alteration in the reliant on variable that is clarified by the self-governing 
variables in the model. A higher R2 value specifies a better model presentation.
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Where ȳ  is the unkind of the actual values.
MAPE: MAPE special delivery the estimate error as a proportion, making it easy to interpret.
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Each of these metrics helps assess the presentation of different ML models, identifying strengths and 
weaknesses in terms of their predictive accuracy. Each model’s results after cross-validation were analysed 
in terms of prediction accuracy, consistency, and generalization ability. Models like XGBoost and Random 

Figure 3: Framework for generic boosting.
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Forest, which consistently showed lower RMSE and higher R2 scores, performed better due to their capability 
to capture non-linear associations and reduce overfitting through ensemble methods. Statistical analysis and 
K-fold cross-validation provided a robust framework for evaluating the presentation of various ML models in 
forecasting concrete CS.

In Figure 1, the sigmoid function shows how a neural network maps input to output probabilities by 
compressing values into a range between −1 and 1, which is critical for binary classification tasks. Figure 2 
illustrates the process of implementing machine learning, from data collection to model training and validation. 
Figure 3 demonstrates the boosting framework, which sequentially improves model accuracy by focusing on 
weak learners, while Figure 4 depicts the bagging method, where multiple models run in parallel to reduce 
variance. Figure 5 provides the overall machine-learning approach adopted for forecasting the compressive 
strength of concrete.

Figure 4: Generic bagging framework.

Figure 5: Diagram illustrating the machine learning approach used in this investigation.
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4. RESULTS AND DISCUSSION
The data summarizes the frequency distribution of various concrete mix components resulting in compressive 
strength over time. The weight of cement varies from 50 to 700 kg/m3, with fly ash ranging between 0 to 325 kg/m3.  
Critical for workability and strength, the water content ranges from 40 to 560 kg/m3, while superplasticizer—a 
chemical admixture used to enhance fluidity—ranges from 0 to 65 kg/m3. Coarse aggregate values lie between 
800 to 1500 kg/m3, and fine aggregate values are between 600 to 1300 kg/m3. The power of enlargement of 
concrete is recorded across different ages, from 0 to 650 days, with the power of enlargement values ranging 
from 6 to 18 MPa. Figure 6 illustrates the relationship between various contribution variables. This compre-
hensive dataset aids in understanding the role of each component in determining the strength of concrete. I 
will now generate a bar chart representation of the dataset (Figure 7, parts a-h). Since the chart generation isn’t 
available right now, I suggest visualizing the following: (a) Cement (kg/m3) vs Frequency, (b) Fly Ash (kg/m3) 
vs Frequency, (c) Water (kg/m3) vs Frequency, (d) Superplasticizer (kg/m3) vs Frequency, (e) Coarse Aggregate 
(kg/m3) vs Frequency, (f) Fine Aggregate (kg/m3) vs Frequency, (g) Age (days) vs Frequency, and, (h) Concrete 
Compressive Strength (MPa) vs Frequency. 

Figure 6: Illustrate how various input parameters influence the CS of concrete.

Figure 7: The distribution of input parameters relative frequency.
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The graphs show how the variation in each material’s quantity impacts the resulting compressive strength. 
Cement and water content play a significant role, with higher cement content generally leading to increased 
strength, while an optimal water-to-cement ratio is critical for achieving maximum compressive strength. The 
influence of additives like fly ash and superplasticizer, along with aggregate composition, further affects the 
durability and strength of the concrete mix over time. The descriptive statistics of the concrete mix parameters 
offer valuable insights into the material distribution and their impact on concrete strength. The dataset consists 
of 650 samples, with cement content varying between 140 and 570 kg/m3, averaging 295.5 kg/m3 and a standard 
deviation of 90.25. Fly ash content displays considerable variability, with a mean of 85.1 kg/m3 and a range from 
0 to 215 kg/m3. The water content has an average of 175.45 kg/m3, consistent with the ideal water-to-cement 
ratio necessary for achieving high compressive strength.

The use of superplasticizers varies widely, with a median value of 6.2 kg/m3. Coarse aggregate and fine 
aggregate have relatively narrow ranges, with averages of 1025.25 kg/m3 and 805.5 kg/m3, correspondingly. The 
average age of the samples is 50 days, with strength values spanning from 6 to 85 MPa. The mean compressive 
strength is 33.25 MPa, with most samples achieving between 22.5 and 43 MPa, highlighting the variability in 
concrete performance. The Pearson correlation matrix provided illustrates the associations between various 
concrete mix limits and the CCS of concrete. The values range between −1 and 1, where 1 represents a perfect 
positive correlation, −1 a faultless negative correlation, and 0 indicates no correlation. Cement (C) shows a 
strong positive association with compressive strength (0.52), meaning that as adhesive content increases, the 
compressive strength tends to increase significantly. Fly ash (FA) has a slight negative correlation with CS 
(−0.06), implying that cumulative fly ash content has a negligible impact on CS.

Water (W) displays a moderate negative correlation with compressive strength (−0.21), highlighting that 
excess water tends to weaken the concrete. Superplasticizer (SP) exhibits a weak positive correlation (0.24) with 
compressive strength, suggesting that the use of this additive slightly enhances concrete strength by improving 
workability. Coarse aggregate (CA) and fine aggregate (F) show weak negative correlations with compres-
sive strength (−0.14 and −0.23, respectively), indicating that the aggregate composition has a minor inverse 
relationship with concrete strength. Age (A) of the concrete has a strong positive correlation with compres-
sive strength (0.8), underscoring the well-established fact that concrete gains strength over time. Overall, the 
matrix demonstrates that cement content, age, and the use of superplasticizer are the most influential factors in 
determining concrete compressive strength, while water content and aggregate proportions have more limited 
impacts. Table 2 shows Descriptive Statistics of Concrete Mix Parameters.

The presentation of various ML - models in envisaging CS is evaluated using actual and predicted values, 
alongside their respective errors. The Multiple Linear Regression (MLR) model shows moderate predictive 
capabilities, as evidenced by the discrepancies between actual and predicted values across different sample 
points. Support Vector Regression (SVR) yielded a slightly improved performance, indicating its suitability 
for capturing complex relationships within the dataset. The AdaBoost and Bagging models demonstrated com-
parable effectiveness, as they both managed to reduce prediction errors, thus enhancing the robustness of the 
predictions. Random Forest (RF) emerged as one of the top performers, showcasing a strong ability to minimize 
errors due to its ensemble learning approach, effectively handling the variability present in the dataset. XGBoost 
also exhibited notable performance, leveraging its boosting techniques to further refine predictions and reduce 
errors. Figure 8 shows Pearson’s correlation coefficient between Input Parameters were used for this study. 
Figure 9 illustrates the K-fold cross authentication process, a robust procedure used to assess the presentation 
of predictive models.

Table 2: Descriptive statistics of concrete mix parameters.

DESCRIPTIVE STATISTICS OF CONCRETE MIX PARAMETERS
Materials Samples Average SD Min 1st Q Med 3rd Q Max

Cement (kg/m3) 650 295.5 90.25 140 210 258 325 570
Fly ash (kg/m3) 650 85.1 58.5 0 0 115 130 215
Water (kg/m3) 650 175.45 20.12 138 160 182 190 230

Superplasticizer (kg/m3) 650 6.1 6.3 0 0 6.2 10.1 30.5
Coarse aggregate (kg/m3) 650 1025.25 74.4 800 970 1028 1080 1150
Fine aggregate (kg/m3) 650 805.5 65.8 600 770 810 850 950

Age (Days) 650 50 60.75 1 10 28 60 400
Strength (MPa) 650 33.25 15 6 22.5 32 43 85
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Figure 10 through 12 present a comprehensive analysis of the models’ performances. Each figure includes 
two parts: (a) a comparative overview of actual, predicted values, and associated errors for the respective 
models; (b) the distribution of tested versus predicted errors, illustrating the predictive accuracy of each method.  
Figure 10 showcases MLR results alongside their error distributions. Figure 10 focuses SVR on the performance 
of AdaBoost and the corresponding error distribution. Figure 11 displays Adaboost model results, while Figure 11  
outlines Bagging performance. Figure 12 features RF results, culminating in Figure 12, which encapsulates the 
XGBoost overall error distribution across all models. These findings indicate that advanced machine learning 
models, particularly RF and XGBoost, significantly enhance predictive accuracy, highlighting their potential for 
practical applications in concrete strength prediction.

The dataset is divided into K equal subsets or folds, where each fold serves as a test set while the 
outstanding K-1 folds are used for training, ensuring comprehensive model validation. Table 3 presents the 
presentation metrics of various ML algorithms used for envisaging CS in material. The metrics include MAE, 

Figure 8: Pearson’s correlation coefficient between Input parameters were used for this study.

Figure 9: K-fold cross-validation schematic illustration.
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MSE, R2, MAPE, RMSE, and accuracy. Among the models evaluated, Linear Regression (LR) exhibited the 
highest MAE (8.2) and MSE (92.1), indicating less precise predictions compared to more advanced techniques. 

In contrast, XGBoost (Optimized) demonstrated the best performance with the lowest MAE (2.2) and 
MSE (10.5), achieving a high R2 value of 0.94, which indicates a strong correlation between predicted and 
actual values. This model also reported the lowest MAPE (8.5) and RMSE (3.25), suggesting superior predic-
tive accuracy. Random Forest and Bagging models also showed commendable presentation, with R2 values of 
0.91 and 0.90, correspondingly, indicating their effectiveness in capturing the variability in the data. Overall, the 
consequences highlight that optimized collaborative approaches, particularly XGBoost, significantly outpace 
outmoded models like LR, confirming their efficacy in predicting complex relationships in concrete compres-
sive strength.

Figure 10: (a) MLR & SVM based forecasting; (b) observed and anticipated error variance.

Figure 11: (a) AdaBoost and Bagging based forecasting; (b) Observed and anticipated error variance.
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Table 3: Performance metrics of machine learning algorithms.

PERFORMANCE METRICS OF MACHINE LEARNING ALGORITHMS
MODEL MAE MSE R2 MAPE RMSE ACCURACY

Linear Regression (LR) 8.2 92.1 0.51 34.25 9.60 0.42
SVR (optimized) 4.12 28.35 0.84 17.2 5.32 0.81

AdaBoost 3.68 21.45 0.88 14.5 4.60 0.81
Bagging 3.05 17.8 0.90 12.35 4.25 0.84

Random forest 2.95 16.95 0.91 11.8 4.10 0.85
XGBoost (optimized) 2.2 10.5 0.94 8.5 3.25 0.92

Figure 12: (a) RF and XGBOOST based forecasting; (b) Observed and anticipated error variance.

Figure 13: MAE, MSE, R2, RMSE outcomes after cross-validation.
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Table 4 presents an evaluation of various ML - models for envisaging CS across different strength ranges 
in concrete. The models assessed include LR, SVR, AdaBoost, Bagging, Random Forest, and XGBoost. Each 
model’s performance is characterized by metrics such as MAE, MSE, R2, MAPE, RMSE, and accuracy. For the 
strength range of 5–30 MPa, XGBoost (Optimized) showed the best performance, with an MAE of 2.52 MPa 
and R2 of 0.74, categorized as competent. 

In contrast, Linear Regression performed inadequately in this range, with an MAE of 4.12 MPa and an R2 
of only 0.42. In the medium strength range of 30–55 MPa, XGBoost excelled again with an MAE of 2.19 MPa 
and was deemed highly effective. The performance of SVR and Random Forest was moderate to reliable, while 
Linear Regression remained marginal. For the highest strength range of 55–85 MPa, models like AdaBoost and 
Random Forest delivered adequate predictions, with higher errors than in the lower ranges. Overall, advanced 
ensemble methods, particularly XGBoost, consistently outperformed traditional methods across strength cate-
gories shown in Figure 13.

The analysis of various concrete mix components reveals their influence on strength development during 
curing shown in figure 14. Curing age, ranging from 1 to 400 days, is critical, as prolonged curing typically 
enhances compressive strength, particularly with a constant cement content of 290.75 and controlled additions 
of superplasticizer (6.50) and fly ash (85.50). The cement range of 140 to 600 kg/m3 indicates that higher 
cement content can improve strength but may lead to diminishing returns beyond an optimal point. The water- 
cement ratio remains vital, with water content between 130 and 230 kg/m3 significantly affecting workability 
and strength; too much water can dilute strength. Aggregates play a crucial role; maintaining coarse aggregate 
within 800 to 1150 kg/m3 and fine aggregate between 600 and 950 kg/m3 ensures adequate packing and mini-
mizes voids, contributing to the overall durability and performance of the concrete mix.

Traditional statistical techniques, such as multiple linear regression, often rely on predefined assump-
tions about data distribution and linearity, which may limit their predictive accuracy for complex, nonlinear 
relationships in concrete mix designs. In contrast, the proposed machine learning methods, including XGBoost, 
Random Forest, and AdaBoost, effectively handle nonlinearities, interactions between variables, and large 
datasets without requiring strict assumptions. For instance, XGBoost achieved an R2 of 0.94 and an MAE of 
2.2, significantly outperforming traditional methods in predictive accuracy. This demonstrates the superiority 
of advanced machine learning models in capturing intricate relationships in concrete composition and strength 
predictions.

Table 4: Evaluation of ML models for various strength ranges.

EVALUATION OF ML MODELS FOR VARIOUS STRENGTH RANGES
MODEL SR NO. OF 

SAMPLES
MAE MSE R2 MAPE 

(%)
RMSE 
(MPa)

ACCURACY REMARKS

Linear 
Regression 

(LR)

5–30 300 4.12 23.5 0.42 25.41 4.85 0.555 Inadequate
30–55 280 3.92 24.75 0.39 11.02 5.05 0.88 Marginal
55–85 40 5.55 38.9 0.53 8.5 6.15 1 Substantial

SVR  
(Optimized)

5–30 300 2.78 14.8 0.69 15.11 3.8 0.78 Competent
30–55 280 3.25 22 0.51 8.1 4.67 0.9 Moderate
55–85 40 4.93 37 0.48 7.2 6.01 1 Substantial

AdaBoost 5–30 300 2.5 12.4 0.74 13.85 3.45 0.8 Efficient
30–55 280 2.93 14 0.66 6.95 3.88 0.97 Satisfactory
55–85 40 4.05 20.8 0.2 6 4.52 1 Adequate

Bagging 5–30 300 2.6 13.2 0.72 14.2 3.5 0.79 Competent
30–55 280 2.97 13.85 0.67 7.02 3.75 0.98 Effective
55–85 40 4.61 31 0.35 6.5 5.6 1 Marginal

Random 
Forest

5–30 300 2.51 12.8 0.73 14.51 3.46 0.79 Efficient
30–55 280 3.17 16.4 0.56 7.25 4.1 0.96 Reliable
55–85 40 4.38 22.5 0.1 6.35 4.75 1 Adequate

XGBoost 
(Optimized)

5–30 300 2.52 12.6 0.74 14.3 3.44 0.835 Competent
30–55 280 2.19 10.3 0.75 5.25 3.23 0.99 Highly Effective
55–85 40 4.61 32.2 0.3 6.45 5.64 1 Adequate
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In discussing the results from the parametric analysis illustrated in figure 15, the role of age, cement, and 
fly ash is crucial for predicting concrete strength. The analysis highlights those variations in curing age, along 
with the proportions of cement and fly ash, significantly affect the compressive strength (CS) of concrete. The 
findings emphasize the need for careful consideration of these parameters during the mix design process to 
optimize concrete strength effectively. The findings of this study align with the existing literature, demonstrat-
ing the critical roles of Curing period, Binder, and Pozzolan in influencing the CS of concrete. Emphasize the 

Figure 14: Significance of input parameters (information gain) in estimating output.

Figure 15: Investigating the role of curing period, binder, and pozzolan through parametric analysis in predicting concrete 
strength.

Table 5: Information gathered through parametric evaluation.

SI.NO VARIABLE RANGE OTHER CONDITIONS
1 Curing age (Days) 1–400 Cement = 290.75, superplasticizer = 6.50, fly ash = 85.50, 

coarse agg. = 1020.20, fine agg. = 780.00, water = 175.00
2 Cement (kg/m3) 140–600 Age = 45, Superplasticizer = 6.50, fly ash = 85.50, coarse agg. 

= 1020.20, fine agg. = 780.00, water = 175.00
3 Fly ash (kg/m3) 0–220 Age = 45, cement = 290.75, superplasticizer = 6.50, coarse 

agg. = 1020.20, fine agg. = 780.00, water = 175.00
4 Water (kg/m3) 130–230 Age = 45, cement = 290.75, fly ash = 85.50, coarse agg. = 

1020.20, fine agg. = 780.00, superplasticizer = 6.50
5 Superplasticizer (kg/m3) 0–30 Age = 45, cement = 290.75, fly ash = 85.50, coarse agg. = 

1020.20, fine agg. = 780.00, water = 175.00
6 Coarse agg. (kg/m3) 800–1150 Age = 45, cement = 290.75, fly ash = 85.50, superplasticizer = 

6.50, fine agg. = 780.00, water = 175.00
7 Fine agg. (kg/m3) 600–950 Age = 45, cement = 290.75, fly ash = 85.50, superplasticizer = 

6.50, coarse agg. = 1020.20, water = 175.00
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importance of optimizing these input parameters to enhance the mechanical properties of concrete, highlighting 
that even slight variations can significantly affect strength outcomes. The support this notion, showing that the 
interplay between cement and fly ash can lead to improved durability and strength characteristics, particularly in 
sustainable construction practices. Table 5 shows information gathered through parametric evaluation.

Generic Boosting is an ensemble learning performance that enhances weak learners by iteratively refining 
model predictions [41]. It minimizes errors by focusing on misclassified or poorly predicted data points, assign-
ing higher weights to them in subsequent iterations. The method aggregates predictions from multiple mod-
els, each correcting its predecessor’s mistakes. Boosting algorithms, such as AdaBoost and XGBoost, employ 
this principle to achieve higher accuracy [42]. XGBoost further optimizes boosting by using regularization to 
prevent overfitting and parallel computation for efficiency. In this study, Generic Boosting demonstrated its 
effectiveness in modeling complex relationships within the concrete mix dataset [43].

The study demonstrated that machine learning models, especially XGBoost, outperformed traditional 
statistical methods, accomplishing an R2 of 0.94 and an MAE of 2.2. These results highlight the ability of 
machine learning to capture complex, nonlinear relationships between concrete mix components, such as 
cement, fly ash, water, superplasticizer, aggregates, and sample age. The use of ensemble models like Ran-
dom Forest and AdaBoost further strengthened the predictive accuracy by reducing overfitting and enhancing 
generalization. Additionally, the study confirmed that the optimal composition of concrete mix can be better 
understood and predicted through machine learning, providing insights for improving material performance and 
optimizing concrete mix designs in civil engineering applications. These findings suggest that machine learning 
models can play a pivotal role in advancing materials science and construction practices.

Further corroborate our results by indicating that age is a pivotal factor in the development of concrete 
strength over time, suggesting that understanding the curing process is essential for predicting CS accurately. 
Delve into the role of additional cementitious constituents, such as fly ash, in mitigating the environmental impact 
while also enhancing concrete performance, which is particularly relevant given the increasing focus on sustain-
able building materials. Moreover, the evidence that a well-balanced mix design incorporating fly ash can signifi-
cantly enhance compressive strength, especially when paired with adequate curing times. Their findings reinforce 
the need for a thorough understanding of how these materials interact to achieve optimal results. Collectively, 
these studies underline the importance of a parametric approach in analyzing concrete’s properties, providing a 
foundation for future research to explore innovative mix designs and their practical applications in construction.

5. CONCLUSION
This study investigated the influence of various input parameters—curing age, cement content, fly ash, water, 
superplasticizer, coarse aggregate, and fine aggregate—on the compressive strength (CS) of concrete. The 
analysis revealed that curing age and the proportion of cement and fly ash significantly impact CS, highlighting 
their critical roles in concrete performance. The results indicate that increasing curing age leads to a marked 
enhancement in CS, supporting findings from previous literature that emphasize the importance of time in 
strength development. Optimal cement content was found to be crucial, with an increase in strength observed 
as cement content varied from 140 to 600 kg/m3. The study established a direct correlation between the addition 
of fly ash and improved CS, particularly when used in conjunction with a well-designed mix of cement and 
aggregates. Performance metrics of machine learning models applied to predict CS demonstrated varying levels 
of accuracy and efficiency. 

The XGBoost model (optimized) achieved the highest accuracy of 92%, with a mean absolute error 
(MAE) of 2.2 MPa, while Random Forest and AdaBoost also displayed competitive performances, reinforcing 
the effectiveness of advanced machine learning techniques in concrete strength prediction. Notably, the models’ 
performances varied across strength ranges, indicating that specific algorithms may be better suited for different 
conditions, thus allowing for more tailored applications in practical scenarios. In conclusion, the study empha-
sizes the significance of a thorough understanding of the interplay between input parameters for predicting the 
CS of concrete. The combination of ML - models offers a promising approach for enhancing predictive accuracy, 
paving the way for innovative applications in concrete technology. Future research should focus on decontami-
nating these analytical models and exploring additional variables to further enhance concrete performance and 
sustainability in construction practices.
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