ISSN: 1092-910X Vol 28 No. 1s (2025)

The Circular Number of a Graph

¹S. Sheeja and ²K.Rajendran

¹Research Scholar, Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai-117. email: sheeja1304@gmail.com

²Associate Professor, Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai-117. email: gkrajendra59@gmail.com

Article History:

Abstract:

Received: 22-08-2024

Revised: 09-10-2024

Accepted: 24-10-2024

If $I_c[S]=V(G)$, then a set $S\subseteq V(G)$ is a circular set of G. The circular number of G, represented by cr(G), is the lowest cardinality of a circular set of G. A cr-set of G is any circular set with cardinality cr(G). In this study, we determine the circular number of certain standard graphs. It is demonstrated that there exists a connected graph G such that dn(G)=a, g(G)=b and cr(G)=c for each integer a,b, and c with a>2,b>2, and c>2. The corona of graphs and circular number of joins were also explored.

Keywords: distance, detour number, geodetic number, circular number, join of a graph and corona of a graph.

1. Introduction and Preliminaries

A graph G = (V, E) is a finite, undirected connected graph without loops or many edges. For order and size, G is denoted by n and m, respectively. To define fundamental ideas in graph theory, we use [1,5]. Two vertices, "u and v, are taken into consideration in G if $uv \in E(G)$. N(v) is the neighborhood of a vertex v in G, which is the set of vertices adjacent to v. The degree of the vertex v is deg(v) = |N(v)|. For any edge $e = \{u, v\}$ of a graph G where deg(u) = I and deg(v) > I, we define v an end edge, u a leaf, and v a support vertex. $\Delta(G)$ indicates a graph G's maximum degree. G[S] is the subgraph that a graph G with a set S of vertices induces, where $uv \in E(G)$: $u, v \in S$ and V(G[S]) = S. An extreme vertex of G is a vertex v if and only if G[N(v)] is complete.

The length d(u, v) is the shortest path length between two vertices $u, v \in V(G)$. Any u - v path with length d(u, v) is a u - v geodesic of G. An internal vertex of a u - v route P is x if it is a vertex of P and $x \neq u, v$. It is evident that the closed interval I[u, v] consists of u, v and all vertices on a u - v geodesic of G. A non-empty set $S \subseteq V(G)$ is closed by the set $I[S] = \bigcup_{u,v \in S} I[u,v]$. A set $S \subseteq V(G)$ is a geodetic set if and only if I[S] = V(G). The most minimal cardinality of a geodetic set of G is its geodetic number, denoted as g(G). A minimum cardinality geodetic set of G is termed as G-set. For graph geodetic parameters, see G-section G-

Any u-v path of length D(u, v) is a u - v detour of G. The closed interval $I_D[u, v]$ is made up of u, v, and all of its vertices lie on a u - v detour of G. If $S \subseteq V(G)$ is non-empty, its closure can be found in the set $I_D[S] = \bigcup_{u,v \in S} I_D[u,v]$. A set $S \subseteq V(G)$ is considered a detour set if $I_D[S] = V(G)$. In a detour set of G, the lowest cardinality is the detour number, denoted by dn(G). A detour set of

ISSN: 1092-910X Vol 28 No. 1s (2025)

minimum cardinality of G can be identified as a dn-set. Also numerous researches covered these ideas [4,6].

 $D^{c}(u, v)$ represents the circular distance between u and v, is defined by

$$Dc^{c}(uc, vc) = \begin{cases} D(uc, vc) + d(uc, vc) & \text{if } uc \neq v \\ 0 & \text{if } uc = v \end{cases}$$

where the distances between uc and vc are detour distance D(uc, vc) and d(uc, vc), respectively. The longest circle distance on G between two vertices is represented by the circular diameter D^c . An u-v circular of G is any u-v path of length $Dc^c(u,v)$. The longest circle distance on G between two vertices is symbolized by the circular diameter D^c . $I_c[uc,vc]$ denotes the set of all vertices on a u-v circular in G for any $u,v \in V$. Let $I_c[S] = \bigcup_{u,v \in S} I_c[u,v]$ for $S \subseteq V(G)$. The graph union $G_I \cup G_2$ together with all the edges linking V_I and V_2 is the join $Gc = G_{cI} + Gc_2$ of graphs G_I and G_2 with disjoint vertices V_I and V_2 and edge sets E_I and E_2 . Define two graphs, H and K. The graph with $Vc(Gc + Hc) = Vc(Gc) \cup Vc(Hc)$ and $E(Gc + Hc) = E(Gc) \cup E(Hc) \cup \{uvc : uc \in Vc(Gc), v \in Vc(Hc)\}$ is the graph that joins G and G. The graph created by taking one copy of G and G and G where G is the graph that joins G and G is the graph created by taking one copy of G and G is an edge, where G is known as the corona product G is the graph G is known as the corona product G is G.

2. The circular number of a graph

Definition 2.1. If $I_c[S] = V(G)$, then a set $S \subseteq V(G)$ is a circular set of G. The circular number of G, represented by cr(G), is the lowest cardinality of a circular set of G. A cr-set of G is any circular set with cardinality cr(Gc).

Example 2.2. For the graph G as illustrated in Figure 2.1, a cr-set of G is $S = \{v_1, v_5, v_{10}\}$, such that cr(G) = 3.

Observation 2.3. (i) $2 \le c_r(G) \le n$ for a connected graph of order $n \ge 2$.

- (ii) In a connected graph G, every circular set of G has an end vertex that belongs to it.
- (iii) No cr-set of G contains a cut vertex of G.

ISSN: 1092-910X Vol 28 No. 1s (2025)

Theorem 2.4. For the complete graph $Gc = K_{nc}$ $(nc \ge 3)$, cr(Gc) = 2.

Proof. Assume that G has two vertices, $\{x, y\}$. $I_c[x, y] = V(G)$ in that case. Consequently, cr(G) = 2 since $\{xc, yc\}$ is a circular set of G.

Theorem 2.5. For the complete bipartite graph $G = K_{r,s}$, $(1 \le r \le s)$, cr(G) = 2.

Proof. Let X and Y be the two bipartite sets of G. Let $S = \{xc, yc\}$ where $x \in X$ and $yc \in Y$. Then $I_G[x, yc] = V(G)$. Hence S is a circular set of G so that cr(Gc) = 2.

Theorem 2.6. For the star $Gc = K_{cl,nc-l}$ $(n \ge 3)$, cr(Gc) = n - 1.

Proof. This is inferred from Observation 2.3 (ii) and (iii).

Theorem 2.7. For the wheel graph $G = K_I + C_{n-1}$ ($nc \ge 4$), cr(Gc) = 2.

Proof. Let $V(K_I) = x$, $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Let $S = \{x, v_1\}$. Then $I_c[S] = V(G)$. Therefore S is a circular set of Gc so that CrG = 2.

Theorem 2.8. For the fan graph $Gc = K_{Ic} + P_{n-1}$ $(nc \ge 4)$, cr(cG) = 2.

Theorem 2.9. Consider the connected graph G, which has a detour diameter D, a circular diameter D^c , and a diameter d. Let P:u-v represent the "circular diameter of G. Let P_1 and P_2 be a diametral path and detour diametral path of G. Such that

$$cr(G) \leq \begin{cases} nc - d + l \\ n - D + l & if \ V(P_{1c}) = V(P_{2c}) \\ n - D^{c} + l & V(cP_{1}) \cap V(cP_{2}) = \{uc, vc\} \\ n - D^{c} + l + d + D & V(cP_{1}) \cap Vc(P_{2}) \neq \{cu, v\} \end{cases}$$

Proof. Let P: $u_0, u_1, u_2, \dots, u_{D^C} = v$ be a circular diametral path of G, P_I : $x_C = x_{0c}, cx_1, cx_2, \dots, x_r = y$ be a diametral path of G and P_2 : $w = w_0, w_1, w_2, \dots, w_s = z$ be a asedetour set of G. Then r+s=d+D.

Case 1: Let $V(P_1) = V(P_2)$. Then $S = V(G) - \{cx_1, cx_2, ..., x_{r-1}\}$ is a circular set of G, so that $cr(G) \le n - (r - 1) = n - r + 1 = n - d + 1$. By the similar way we can prove that $cr(G) \le n - D + 1$.

Case 2: $Vc(P_1) \cap Vc(P_2) = \{uc, vc\}$. Then $S = Vc(Gc) - \{u_1, u_2,u_{D^c-1}\}$ is a circular set of G, so that $cr(G) \le n - D^c + I$

Case 3: $V(P_1) \cap V(P_2) \neq \emptyset \neq \{u,v\}$. Without loss of generality let us assume

that $x_1', x_2',, x_r'$ in P_1 and $w_1', w_2',, w_s'$ which is not belongs to $V(P_1) \cap V(P_2)$. Then $S = V(G) - \{ cu_1, cu_2, u_D c_{-1} \} \cup \{ cx_1', cx_2',, cx_r' \} \cup \{ cw_1', cw_2',, w_s' \}$ is a circular set of cG, so that $cr(G) \le n - D^c + l + r + s \le n - D^c + l + d + D$.

Theorem 2.10. Let G be a non-complete connected graph of order $n \ge 3$, and its vertex connectivity is denoted as $\kappa(G)$ in $cr(G) \le n - \kappa(G)$.

ISSN: 1092-910X Vol 28 No. 1s (2025)

Proof. Since G is non-complete, it follows that $1 \le \kappa(G) \le n - 2$. Let $Z = \{z_1, z_2, ..., z_{\kappa}\}$ be the minimal cutset of the vertices of G. Clearly S = V(G) - Z where $cG_1, cG_2, ..., Gc_r$ $(rc \ge 2)$ be the components of G-Uc. As a result, every vertex u_i $(1 \le i \le \kappa)$ has at least one neighbouring vertex in G_j $(1 \le jc \le rc)$. Thus $I_c[S] = V(G)$ implies that S is a circular set of G. As a result, $cr(G) \le n - \kappa(G)$.

Next, we demonstrate that for every integer $n \ge 4$, there exists a single connected network of rank n with circular number n - 1.

Theorem 2.11. A connected graph G of order p, detour number k and detour diameter D exist for every triple D, k, p of integers with $2 \le k \le p - D^C D + 1$ and $D \ge 2$.

Proof. Let *G* represent the graph that was created from the cycle C_{D^C-1} : $u_1, u_2, \ldots, u_{D^C-1}, u_1$ of order $D^C - I$ by (1) integrating k - I new vertices to $v_1, v_2, \ldots, u_{k-1}$ and combining each vertex v_i ($1 \le i \le k-1$) to u_1 and (2) merging $n-D^C-k+2$ new vertices to $w_1, w_2, \ldots, w_{n-D-k+2}$ and incorporating every vertex w_i ($1 \le i \le n-D^C-k+2$) to both u_1 and u_3 ." The graph *G*, which is displayed in Figures 2.2 and 2.3, has order n and a circular diameter of D^C .

3. Circular number of Join of two graphs

Theorem 3.1. Let $G = K_{n_1} + H$ $(n \ge 2)$ where H is non-complete connected graph of order $n_2 \ge 2$. Then $cr(Gc) \ge cr(Hc)$.

Proof. Let G be a connected path with $V(K_{n_1}) = \{v_1, v_2, ..., v_{n_1}\}$ $(n_1 \ge 2)$ and Hc be a non-complete connected graphs of order $n_2 \ge 2$. Let S be a cr-set of cH. If $D^c(u, v) \le 3$ for every $u, x \in S$, then cS is a circular set of Gc so that cr(Gc) = |S| = cr(Hc).

ISSN: 1092-910X Vol 28 No. 1s (2025)

If $D_H^c(u, v) \ge 4$ for some $u, v \in S$, then $d_G(x, y) \le 2$ for every $xc, yc \in Gc$ and $D_{Gc}(xc, y) \ge 2$ for every $xc, yc \in Gc$, Sc is not a circular set of Gc. Let S_I be a cr-set of Gc. Since for all $u, v \in S_I$, $D_H^c(u, v) \ge 4$, $|S_I| > |S|$. Therefore $cr(G) \ge cr(H)$.

Theorem 3.2 $cr(K_{n_1} + P_{n_2}) = 2$, where $n_1, n_2 \ge 2$.

Proof. Let $Vc(K_{n_1})$ be $u_1c, u_{2c}, ..., u_{n_1}$ and $V(P_{n_2})$ be $v_1, v_2, ..., v_{n_2}$. Let $Sc = \{u_{1c}, v_{n_2}\}$. Then S is a circular set of G so that $cr(K_{n_1} + P_{n_2}) = 2$.

Theorem 3.3 $cr(K_{n_1} + K_{n_2}) = 2$, where $n_1, n_2 \ge 2$.

Proof. Since $K_{n_1} + K_{n_2}$ is the complete graph $K_{n_1+n_2}$, then Theorem 2.4 yields the desired outcome.

Theorem 3.4 $cr(C_{n_1} + C_{n_2}) = 2$, where $n_1, n_2 \ge 3$.

Proof. Let $V(C_{n_1})$ be $u_{1c}, u_{2c}, \dots, u_{n_1}$ and $V(C_{n_2})$ be v_1, v_2, \dots, v_{n_2} . Let $Sc = \{u_{1c}, v_{n_2}\}$. Then S is a circular set of G so that $cr(C_{n_1} + C_{n_2}) = 2$.

Theorem 3.5 Let P_{n_1} and P_{n_2} be two non-trivial paths of order $n_1 \ge 2$ and $n_2 \ge 2$ respectively. Then $cr(P_{n_1} + P_{n_2}) = 2$.

Proof. Let $Vc(P_{n_1})$ be $u_{1c}, u_{2c}, ..., u_{n_1}$ and $V(P_{n_2})$ be $v_1, v_2, ..., v_{n_2}$. Let $Sc = \{u_{1c}, v_{n_2}\}$. Then Sc is a circular set of Gc so that $cr(P_{n_1} + P_{n_2}) = 2$.

Theorem 3.6 Let $cr(\overline{K}_{n_l} + H) = 2$, where $n_l \ge l$ and H is a connected graph of order $n_2 \ge 2c$.

Proof. Let $Vc(\overline{K}_{n_1})$ be $u_1, u_2, ..., u_{n_1}$ and H be $v_1, v_2, ..., v_{n_2}$. Let $S = \{cu_1, v_{n_2}\}$. Then Sc is a circular set of Gc so that $cr(\overline{K}_{n_1} + cH) = 2$.

4. Circular number of Corona of two graphs c

Theorem 4.1. $cr(C_{n_1} \circ C_{n_2}) = 2n_1 - 2, n_1 \ge 3 \text{ and } n_2 \ge 3.$

Proof. Let $V(P_{n_1}) = \{u_1, u_2, ..., u_{n_1}\}$ and $V(P_{n_2}) = \{v_1, v_2, ..., v_{n_2}\}$. The set of vertices of ith of P_{n_2} is referred as $V(P_{n_2}^i) = \{v_1^i, v_2^i, ..., v_{n_2}^i\}$ ($I \le i \le n_I$). Since every circular set of G contains at least one vertex from $P_{n_2}^I$ and $P_{n_2}^{n_1}$ are at least two vertices from $P_{n_2}^i$ ($2 \le i \le n_I - I$), $cr(P_{n_1} \circ P_{n_2}) \ge 2 + 2$ ($n_I - I$) = $2n_I - 2$ $cr(P_{n_1} \circ P_{n_2}) = 2$ ($n_I - I$). Therefore $S = \{v_1^l, v_{n_2}^{n_1}, v_{n_2}^2, v_1^3, v_{n_2}^3, ..., v_1^{n_I-I}, v_{n_2}^{n_I-I}\}$, such that S is a circular set of G. Hence $cr(P_{n_1} \circ P_{n_2}) = 2n_I - 2$.

Theorem 4.2. $cr(P_{n_1} \circ P_{n_2}) = 2(n_1 - 1)$ where $n_1 \ge 2$ and $n_2 \ge 2$.

Proof. Let $V(P_{n_1}) = \{u_1, u_2, ..., u_{n_l}\}$ and $V(P_{n_2}) = \{v_1, v_2, ..., v_{n_2}\}$. Let $V(P_{n_2}^i) = \{v_1^i, v_2^i, ..., v_{n_2}^i\}$ ($l \le i \le n_l$) be the set of vertices of ith of P_{n_2} . Since $P_{n_2}^l$ and $P_{n_2}^{n_l}$ are at least two vertices from $P_{n_2}^i$ ($l \le i \le n_l$), every circular set contains at least one vertex from each of these sets; so, $cr(P_{n_1} \circ P_{n_2}) \ge 2 + 2(n_l - l) = 2n_l - 2$.

ISSN: 1092-910X Vol 28 No. 1s (2025)

Let $S = \{v_1^I, v_{n_2}^{n_I}, v_1^2, v_{n_2}^2, v_1^3, v_{n_2}^3, \dots, v_1^{n_I-1}, v_{n_2}^{n_I-1}\}$. Therefore S is a circular set of G such that $cr(P_{n_I} \circ P_{n_2}) = 2n_I - 2$.

Theorem 4.3. Let $cr(H \circ \overline{K}_{n_2}) = n_1 n_2$, $n_2 \ge 1$ and H be any non-trivial connected graph for $n_1 \ge 2$.

Proof. Let $V(Hc) = \{uc_1, cu_2, ..., cu_{n_1}\}$ and $V(\overline{K}_{n_2}) = \{cv_1, vc_2, ..., v_{n_2}\}$. Let $V(\overline{K}_{n_2}^i) = \{v_1^i, v_2^i, ..., v_{n_2}^i\}$ ($1 \le i \le n_1$) be the set of vertices of i^{th} of \overline{K}_{n_2} . Thus the set of end vertices of G is represented as $S = \bigcup_{i=1}^{n_1} V(\overline{K}_{n_2}^i)$. According to Theorem 1.1, S is a subset for every circular set of G and so $cr(H \circ \overline{K}_{n_2}) \ge n_1 n_2$. Hence $I_{D^c}[S] = V(G)$, S is a circular set of $Hc \circ \overline{K}_{n_2}$. Therefore $cr(Hc \circ \overline{K}_{n_2}) = n_1 n_2$. c

References

- [1] F. Buckley and F.Harary, Distance in Graphs, Addision-Weseely, Reading MA, (1990).
- [2] Chartrand. G, Harary. F and Zhang. P, On the geodetic number of a graph, Networks, 39(1), (2002), 1 6.
- [3] Chartrand. G, Palmer. E. M, and Zhang. P, The geodetic number of a graph, A Survey, Congressus Numerantium, 156, (2002), 37 58.
- [4] G. Chartrand, L.Johns and P.Zang, Detour Number of graph, Utilitas Mathematics, 64(2003),97-113.
- [5] G. Chartrand, H.Escuadro and P.Zhang, Distance in Graphs, Taking the Long View, AKCE J.Graphs and Combin.,1(1)(2004), 1-13.
- [6] G. Chartrand, H.EScuadro and B.Zang, Detour distance in graph, J.Combin, mathcombin, compul 53 (2005) 75-94.
- [7] Hansberg. A, Volkmann. L, On the geodetic and geodetic domination numbers of a graph, Discrete Mathematics, 310(15-16), (2010), 2140-2146.