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Abstract:       

If I_c [S]=V(G), then a set S⊆V (G) is a circular set of G. The circular number 

of G, represented by cr(G), is the lowest cardinality of a circular set of G. A 

cr-set of G is any circular set with cardinality cr(G). In this study, we 

determine the circular number of certain standard graphs. It is demonstrated 

that there exists a connected graph G such that dn(G)=a, g(G)=b and cr(G)=c 

for each integer a,b, and c with a>2,b>2, and c>2. The corona of graphs and 

circular number of joins were also explored.  

Keywords: distance, detour number, geodetic number,  circular number, join 

of a graph and corona of a graph. 

 

 

1. Introduction and Preliminaries 

A graph 𝐺 =  (𝑉, 𝐸) is a finite, undirected connected graph without loops or many edges. For order 

and size, 𝐺 is denoted by n and m, respectively. To define fundamental ideas in graph theory, we use 

[1,5]. Two vertices, “u and v, are taken into consideration in 𝐺  if 𝑢𝑣 ∈  𝐸(𝐺).  𝑁(𝑣)  is the 

neighborhood of a vertex 𝑣 in 𝐺, which is the set of vertices adjacent to 𝑣. The degree of the vertex 𝑣 

is 𝑑𝑒𝑔(𝑣)  =  |𝑁(𝑣)|. For any edge 𝑒 =  {𝑢, 𝑣} of a graph 𝐺 where 𝑑𝑒𝑔(𝑢)  =  1 and 𝑑𝑒𝑔(𝑣)  >  1, 

we define 𝑣  an end edge, 𝑢  a leaf, and  𝑣  a support vertex. ∆(𝐺) indicates a graph 𝐺 's maximum 

degree. 𝐺[𝑆] is the subgraph that a graph G with a set S of vertices induces, where 𝑢𝑣 ∈  𝐸(𝐺): 𝑢, 𝑣 ∈

 𝑆} and 𝑉 (𝐺[𝑆])  =  𝑆. An extreme vertex of 𝐺 is a vertex 𝑣 if and only if 𝐺[𝑁(𝑣)] is complete.  

The length 𝑑(𝑢, 𝑣) is the shortest path length between two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺). Any 𝑢 − 𝑣 path with 

length 𝑑(𝑢, 𝑣) is a 𝑢 − 𝑣 geodesic of 𝐺. An internal vertex of a 𝑢 − 𝑣 route 𝑃 is 𝑥 if it is a vertex of 𝑃 

and 𝑥 ≠  𝑢, 𝑣. It is evident that the closed interval 𝐼[𝑢, 𝑣] consists of 𝑢, 𝑣 and all vertices on a 𝑢 − 𝑣 

geodesic of 𝐺. A non-empty set 𝑆 ⊆  𝑉(𝐺) is closed by the set 𝐼[𝑆]  =  ⋃  𝐼[𝑢, 𝑣]𝑢,𝑣∈𝑆  . A set 𝑆 ⊆

 𝑉(𝐺) is a geodetic set if and only if 𝐼[𝑆]  =  𝑉 (𝐺). The most minimal cardinality of a geodetic set of 

𝐺 is its geodetic number, denoted as g(G). A minimum cardinality geodetic set of 𝐺 is termed as g-set. 

For graph geodetic parameters, see [2,3,7]. The detour distance 𝐷(𝑢, 𝑣) is the longest path in 𝑉(𝐺) 

between two vertices, u and v.  

Any u-v path of length 𝐷(𝑢, 𝑣) is a 𝑢 − 𝑣 detour of 𝐺. The closed interval 𝐼𝐷[𝑢, 𝑣] is made up of 𝑢, 𝑣, 

and all of its vertices lie on a 𝑢 − 𝑣 detour of 𝐺. If 𝑆 ⊆  𝑉 (𝐺) is non-empty, its closure can be found 

in the set 𝐼𝐷[𝑆]  =  ⋃  𝐼𝐷[𝑢, 𝑣]𝑢,𝑣∈𝑆 . A set 𝑆 ⊆ 𝑉(𝐺) is considered a detour set if 𝐼𝐷[𝑆] =  𝑉 (𝐺). In a 

detour set of 𝐺,  the lowest cardinality is the detour number, denoted by 𝑑𝑛(𝐺).  A detour set of 
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minimum cardinality of 𝐺 can be identified as a 𝑑𝑛-set. Also numerous researches covered these ideas 

[4,6].  

𝐷𝑐(𝑢, 𝑣) represents the circular distance between 𝑢 and 𝑣, is defined by  

𝐷c𝑐(𝑢c, 𝑣c) = {𝐷
(𝑢c, 𝑣c) + 𝑑(𝑢c, 𝑣c)      if 𝑢c ≠ 𝑣
               0                     if 𝑢c = 𝑣

 

where the distances between 𝑢c and 𝑣c are detour distance 𝐷(𝑢c, 𝑣c) and 𝑑(𝑢c, 𝑣c), respectively. The 

longest circle distance on 𝐺 between two vertices is represented by the circular diameter 𝐷𝑐. An 𝑢 −

𝑣 circular of 𝐺 is any 𝑢 − 𝑣 path of length 𝐷c𝑐(𝑢, 𝑣). The longest circle distance on 𝐺 between two 

vertices is symbolized by the circular diameter 𝐷𝑐. 𝐼𝑐[𝑢c, 𝑣c]denotes the set of all vertices on a 𝑢 − 𝑣 

circular in 𝐺  for any 𝑢, 𝑣 ∈ 𝑉 . Let 𝐼𝑐[𝑆] = ⋃ 𝐼𝑐[𝑢, 𝑣]𝑢,𝑣 ∈𝑆  for 𝑆 ⊆ 𝑉(𝐺). The graph union 𝐺1 ∪ 𝐺2 

together with all the edges linking 𝑉1 and 𝑉2 is the join 𝐺c = 𝐺c1 + 𝐺c2   of graphs 𝐺1  and 𝐺2  with 

disjoint vertices 𝑉1  and 𝑉2  and edge sets 𝐸1  and 𝐸2 . Define two graphs, 𝐻  and 𝐾 . The graph with 

𝑉c(𝐺c + 𝐻c) =  𝑉c(𝐺c) ∪ 𝑉c(𝐻c) and  𝐸(𝐺c + 𝐻c)  =  𝐸(𝐺c) ∪ 𝐸(𝐻c) ∪ {𝑢𝑣c ∶  𝑢c ∈ 𝑉c(𝐺c), 𝑣 ∈

 𝑉c(𝐻c)} is the graph that joins 𝐺 and 𝐻.” The graph created by taking one copy of 𝐾 and |𝑉(𝐾)| 

copies of 𝐻 and attaching all the vertices from the 𝑖th-copy of 𝐻 to the 𝑖th-vertex of 𝐾 by an edge, 

where i = 1, 2, . . ., |𝑉 (𝐻c)| is known as the corona product 𝐾 ⊙  𝐻.  

2. The circular number of a graph 

Definition 2.1. If 𝐼𝑐[𝑆] = 𝑉(𝐺), then a set 𝑆 ⊆ 𝑉 (𝐺) is a circular set of 𝐺. The circular number of 𝐺, 

represented by 𝑐𝑟(𝐺), is the lowest cardinality of a circular set of 𝐺. A 𝑐𝑟-set of 𝐺 is any circular set 

with cardinality 𝑐𝑟(𝐺c).  

Example 2.2. For the graph 𝐺 as illustrated in Figure 2.1, a 𝑐𝑟-set of 𝐺 is 𝑆= {𝑣1, 𝑣5, 𝑣10}, such that 

𝑐𝑟(𝐺) = 3.  

 

Observation 2.3. (i) 2 ≤ 𝑐𝑟(𝐺)  ≤ 𝑛 for a connected graph of order 𝑛 ≥ 2.  

(ii) In a connected graph G, every circular set of G has an end vertex that belongs to it. 

(iii) No 𝑐𝑟-set of 𝐺 contains a cut vertex of 𝐺.  

 

𝑣1 

   𝑣10 

𝑣4 

𝑣6 

        𝐺 
           Figure 2.1 
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𝑣9 

   𝑣5 

   𝑣3 
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Theorem 2.4. For the complete graph 𝐺c = 𝐾𝑛c  (𝑛c ≥ 3), 𝑐𝑟(𝐺c) = 2.  

Proof. Assume that 𝐺 has two vertices, {𝑥, 𝑦}. 𝐼𝑐[𝑥, 𝑦] = 𝑉(𝐺) in that case. Consequently, 𝑐𝑟(𝐺) = 2 

since {𝑥c, 𝑦c} is a circular set of G.          

Theorem 2.5.  For the complete bipartite graph 𝐺 = 𝐾𝑟,𝑠, (1 ≤ 𝑟 ≤ 𝑠),  𝑐𝑟(𝐺) = 2. 

Proof. Let 𝑋  and  𝑌 be the two bipartite sets of 𝐺.  Let 𝑆 = {𝑥c, 𝑦c} where 𝑥 ∈ 𝑋 and 𝑦c ∈ 𝑌. Then 

𝐼𝑐[𝑥, 𝑦c] = 𝑉(𝐺). Hence 𝑆 is a circular set of 𝐺 so that 𝑐𝑟(𝐺c) = 2.   

Theorem 2.6. For the star 𝐺c = 𝐾c1,𝑛c−1  (𝑛 ≥ 3), 𝑐𝑟(𝐺c) = 𝑛 − 1.  

Proof. This is inferred from Observation 2.3 (ii) and (iii).     

Theorem 2.7. For the wheel graph 𝐺 = 𝐾1 + 𝐶𝑛−1 (𝑛c ≥ 4),  𝑐𝑟(𝐺c) = 2.  

Proof. Let 𝑉(𝐾1) = 𝑥, 𝑉(𝐶𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1}.  Let  𝑆 = {𝑥, 𝑣1}. Then 𝐼𝑐[𝑆] = 𝑉(𝐺). Therefore 

𝑆 is a circular set of 𝐺c so that 𝑐𝑟(𝐺) = 2.   

Theorem 2.8. For the fan graph 𝐺c = 𝐾1c + 𝑃𝑛−1 (𝑛c ≥ 4),  𝑐𝑟(c𝐺) = 2.  

Proof. Let 𝑉(𝐾1c) = 𝑥  and 𝑉(𝑃𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1}   let  𝑆 = {𝑥, 𝑣1}. Then 𝐼𝑐[𝑆] = 𝑉(𝐺) and so 

𝑆 is a circular set of 𝐺c. Therefore 𝑐𝑟(𝐺c) = 2.             

Theorem 2.9.  Consider the connected graph 𝐺, which has a detour diameter 𝐷, a circular diameter 

𝐷𝑐, and a diameter 𝑑. Let P:u-v represent the “circular diameter of 𝐺. Let 𝑃1 and 𝑃2 be a diametral path 

and detour diametral path of 𝐺. Such that 

𝑐𝑟(𝐺) 

{
 

 

 

𝑛c − 𝑑 + 1                                                            

𝑛 − 𝐷 + 1                      𝑖𝑓 𝑉(𝑃1c) = 𝑉(𝑃2c) 

𝑛 − 𝐷𝑐 + 1            𝑉(c𝑃1) ∩ 𝑉(c𝑃2) = {𝑢c,𝑣c}

𝑛 − 𝐷𝑐 + 1+ 𝑑 + 𝐷    𝑉(c𝑃1) ∩ 𝑉c(𝑃2) ≠ {c𝑢,𝑣}

 

Proof.  Let P: u0, u1,u2, …….𝑢𝐷𝐶 = 𝑣 be a circular diametral path of G,  𝑃1: 𝑥c =

𝑥0c, c𝑥1, c𝑥2, … , 𝑥𝑟 = 𝑦 be a diametral path of G and 𝑃2: 𝑤 = 𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑠 = 𝑧 be a asedetour set 

of G. Then r+s=d+D. 

Case 1: Let  𝑉(𝑃1) = 𝑉(𝑃2). Then S = V(G) – { c𝑥1, c𝑥2, … , 𝑥𝑟−1} is a circular set of G, so that cr (G) 

≤ 𝑛 − (𝑟 − 1) = 𝑛 − 𝑟 + 1 = 𝑛 − 𝑑 + 1. By the similar way we can prove that  cr (G) ≤ 𝑛 − 𝐷 +

1.                                                                                          

Case 2:   𝑉c(𝑃1) ∩ 𝑉c(𝑃2) = {𝑢c,𝑣c}. Then  S = Vc(Gc) – { u1,u2, …….𝑢𝐷𝐶−1}  is a circular set of G, 

so that cr (G) ≤ 𝑛 − 𝐷𝑐 + 1                                                                                                                                     

Case 3:    𝑉(𝑃1) ∩ 𝑉(𝑃2) ≠ ∅ ≠ {𝑢,𝑣}  .Without loss of generality let us assume  

         that 𝑥1
′, 𝑥2

′, … . , 𝑥𝑟
′ in 𝑃1  and 𝑤1

′, 𝑤2
′, … . , 𝑤𝑠

′ 𝑤ℎ𝑖𝑐ℎ is not belongs to 𝑉(𝑃1) ∩ 𝑉(𝑃2). Then S = 

V(G) – { cu1, cu2, …….𝑢𝐷𝐶−1}  ∪  { c𝑥1
′, c𝑥2

′, … . , c𝑥𝑟
′ }∪     {c𝑤1

′, c𝑤2
′, … . , 𝑤𝑠

′}  is a circular set of 

c𝐺, so that  cr (G) ≤ 𝑛 − 𝐷𝑐 + 1+ 𝑟 + 𝑠 ≤ 𝑛 − 𝐷𝑐 + 1+ 𝑑 + 𝐷. 

Theorem 2.10.    Let 𝐺 be a non-complete connected graph of order 𝑛 ≥ 3, and its vertex connectivity 

is denoted as (G) in  𝑐𝑟(𝐺)   n– (G). 
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Proof. Since 𝐺c is non-complete, it follows that 1 (G)  n – 2. Let Z = {z1, z2, …, z } be the 

minimal cutset of the vertices of 𝐺. Clearly 𝑆 =  𝑉(𝐺) –  𝑍 where c𝐺1, c𝐺2, … , 𝐺c𝑟   (𝑟c ≥ 2) be the 

components of 𝐺c–𝑈c. As a result, every vertex ui (1 i ) has at least one neighbouring vertex in Gj 

(1 𝑗𝑐  𝑟𝑐). Thus  𝐼𝑐[𝑆] = 𝑉(𝐺) implies that 𝑆 is a circular set of 𝐺. As a result, 𝑐𝑟(𝐺)  n– (G). 

Next, we demonstrate that for every integer 𝑛 ≥ 4, there exists a single connected network of rank 

𝑛 with circular number 𝑛 − 1.                                                                          

Theorem 2.11. A connected graph 𝐺 of order 𝑝, detour number 𝑘 and detour diameter 𝐷 exist for 

every triple 𝐷, 𝑘, 𝑝 of integers with 2 ≤ 𝑘 ≤ p−𝐷𝐶D+1 and 𝐷 ≥ 2. 

Proof. Let 𝐺 represent the graph that was created from the cycle 𝐶𝐷𝐶−1: u1, u2, …….𝑢𝐷𝐶−1, u1 of 

order 𝐷𝐶 − 1 by (1) integrating 𝑘 − 1 new vertices to v1, v2,…….., uk-1 and combining each vertex vi 

(1 ≤ i≤ k−1) to u1 and (2) merging  n− 𝐷𝐶− k+2 new vertices to w1, w2,……, wn-D-k+2 and 

incorporating every vertex wi (1 ≤ i ≤ n−𝐷𝐶−k+2) to both u1 and u3.” The graph 𝐺, which is 

displayed in Figures 2.2 and 2.3, has order n and a circular diameter of 𝐷𝐶.  

 

 

3. Circular number of Join of two graphs 

Theorem 3.1. Let 𝐺 = 𝐾𝑛1
+ 𝐻 (𝑛 ≥ 2) where 𝐻 is non-complete connected graph of order 𝑛2 ≥ 2. 

Then 𝑐𝑟(𝐺c) ≥ 𝑐𝑟(𝐻c).  

Proof. Let 𝐺 be a connected path with 𝑉(𝐾𝑛1
) = {𝑣1, 𝑣2, … , 𝑣𝑛1

} (𝑛1 ≥ 2)  and 𝐻c be a non-

complete connected graphs of order 𝑛2 ≥ 2. Let 𝑆 be a 𝑐𝑟-set of c𝐻. If 𝐷𝑐(𝑢, 𝑣) ≤ 3 for every 𝑢, 𝑥 ∈

𝑆, then c𝑆 is a circular set of 𝐺c so that  𝑐𝑟(𝐺c) = |𝑆| = 𝑐𝑟(𝐻c).  

 

u1 

u2 

u3 

𝑢𝐷𝐶 u2 

uk-1 

w1 w2 𝑤𝑛−𝐷𝐶 2 

𝑢𝐷𝐶−1 

G 
Figure 2.2 
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𝑢  𝑣  

𝑥 

𝑣1 

𝑣2 𝑢2 

𝑢1 

𝑤2 

  

𝑤1 

  

𝑤  

  

𝑥1 

  

𝑥2 

  

𝑥  1 

  

𝑦1 

  

𝑦2 

  

𝑦  1 

  

𝑧1 

  

𝑧2 

  

𝑧𝑐−1 

  

        𝐺 
           Figure 2.3 
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If 𝐷𝐻
𝑐 (𝑢, 𝑣) ≥ 4 for some 𝑢, 𝑣 ∈ 𝑆, then 𝑑𝐺(𝑥, 𝑦) ≤ 2 for every 𝑥c, 𝑦c ∈ 𝐺c and 𝐷𝐺c(𝑥c, 𝑦) ≥ 2 for 

every 𝑥c, 𝑦c ∈ 𝐺c, 𝑆c is not a circular set of 𝐺c. Let 𝑆1 be a 𝑐𝑟-set of 𝐺c. Since for all 𝑢, 𝑣 ∈ 𝑆1, 

𝐷𝐻
𝑐 (𝑢, 𝑣) ≥ 4, |𝑆1| > |𝑆|. Therefore 𝑐𝑟(𝐺) ≥ 𝑐𝑟(𝐻).            

Theorem 3.2 𝑐𝑟(𝐾𝑛1
+ 𝑃𝑛2

) = 2, where  𝑛1, 𝑛2 ≥ 2.   

Proof. Let 𝑉c(𝐾𝑛1
) be 𝑢1c, 𝑢2c, … , 𝑢𝑛1 and 𝑉(𝑃𝑛2

) be 𝑣1, 𝑣2, … , 𝑣𝑛2. Let 𝑆c = {𝑢1c, 𝑣𝑛2
}. Then 𝑆 is a 

circular set of 𝐺 so that 𝑐𝑟(𝐾𝑛1
+ 𝑃𝑛2

) = 2.           

Theorem 3.3 𝑐𝑟(𝐾𝑛1
+ 𝐾𝑛2

) = 2, where  𝑛1, 𝑛2 ≥ 2.   

Proof. Since 𝐾𝑛1
+ 𝐾𝑛2

 is the complete graph 𝐾𝑛1 𝑛2
, then Theorem 2.4 yields the desired outcome. 

Theorem 3.4 𝑐𝑟(𝐶𝑛1
+ 𝐶𝑛2

) = 2, where  𝑛1, 𝑛2 ≥ 3.   

Proof. Let 𝑉(𝐶𝑛1
) be 𝑢1c, 𝑢2c, … , 𝑢𝑛1 and 𝑉(𝐶𝑛2

) be 𝑣1, 𝑣2, … , 𝑣𝑛2. Let 𝑆c = {𝑢1c, 𝑣𝑛2
}. Then 𝑆 is a 

circular set of 𝐺 so that 𝑐𝑟(𝐶𝑛1
+ 𝐶𝑛2

) = 2.           

Theorem 3.5 Let 𝑃𝑛1
 and 𝑃𝑛2

 be two non-trivial paths of order 𝑛1 ≥ 2 and 𝑛2 ≥ 2  respectively. Then 

𝑐𝑟(𝑃𝑛1
+ 𝑃𝑛2

) = 2.  

Proof. Let 𝑉c(𝑃𝑛1
) be 𝑢1c, 𝑢2c, … , 𝑢𝑛1

 and 𝑉(𝑃𝑛2
) be 𝑣1, 𝑣2, … , 𝑣𝑛2

. Let 𝑆c = {𝑢1c, 𝑣𝑛2
}. Then 𝑆c is a 

circular set of 𝐺c so that 𝑐𝑟(𝑃𝑛1
+ 𝑃𝑛2

) = 2.  

Theorem 3.6 Let 𝑐𝑟(𝐾𝑛1
+ 𝐻) = 2, where  𝑛1 ≥ 1 and 𝐻 is a connected graph of order 𝑛2 ≥ 2c.    

Proof. Let 𝑉c(𝐾𝑛1
) be 𝑢1, 𝑢2, … , 𝑢𝑛1 and 𝐻 be 𝑣1, 𝑣2, … , 𝑣𝑛2. Let 𝑆 = {c𝑢1, 𝑣𝑛2

}. Then 𝑆c is a 

circular set of 𝐺c so that 𝑐𝑟(𝐾𝑛1
+ c𝐻) = 2.  

4. Circular number of Corona of two graphs c 

Theorem 4.1. 𝑐𝑟(𝐶𝑛1 ∘ 𝐶𝑛2
) = 2𝑛1 − 2, 𝑛1 ≥ 3  and 𝑛2 ≥ 3. 

Proof. Let 𝑉(𝑃𝑛1
) = {𝑢1, 𝑢2, … , 𝑢𝑛1

} and 𝑉(𝑃𝑛2
) = {𝑣1, 𝑣2, … , 𝑣𝑛2

}.  The set of vertices of ith  of 𝑃𝑛2
 is 

referred as 𝑉(𝑃𝑛2

𝑖 ) = {𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑛2

𝑖 } (1 ≤ 𝑖 ≤ 𝑛1). Since every circular set of 𝐺  contains at least one 

vertex from 𝑃𝑛2

1  and 𝑃𝑛2

𝑛1  are at least two vertices from 𝑃𝑛2

𝑖  (2 ≤ 𝑖 ≤ 𝑛1 − 1), 𝑐𝑟(𝑃𝑛1 ∘ 𝑃𝑛2
) ≥ 2+ 2 

( 𝑛1 − 1) =  2𝑛1 − 2   𝑐𝑟(𝑃𝑛1 ∘ 𝑃𝑛2
) = 2 ( 𝑛1 − 1).  Therefore 𝑆 =

{𝑣1
1, 𝑣𝑛2

𝑛1 , 𝑣1
2, 𝑣𝑛2

2 , 𝑣1
3, 𝑣𝑛2

3 , … , 𝑣1
𝑛1−1, 𝑣𝑛2

𝑛1−1}, such that 𝑆  is a circular set of 𝐺 . Hence 𝑐𝑟(𝑃𝑛1 ∘ 𝑃𝑛2
) =

 2𝑛1 − 2.            

Theorem 4.2. 𝑐𝑟(𝑃𝑛1 ∘ 𝑃𝑛2
) = 2(𝑛1 − 1) where 𝑛1 ≥ 2 and 𝑛2 ≥ 2. 

Proof. Let 𝑉(𝑃𝑛1
) = {𝑢1, 𝑢2, … , 𝑢𝑛1

}  and 𝑉(𝑃𝑛2
) = { 𝑣1, 𝑣2, … , 𝑣𝑛2

}.  Let 𝑉(𝑃𝑛2

𝑖 ) =

{𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑛2

𝑖 } (1 ≤ 𝑖 ≤ 𝑛1) be the set of vertices of ith  of 𝑃𝑛2
. Since 𝑃𝑛2

1  and 𝑃𝑛2

𝑛1  are at least two 

vertices from 𝑃𝑛2

𝑖  (1 ≤ 𝑖 ≤ 𝑛1), every circular set contains at least one vertex from each of these sets; 

so, 𝑐𝑟(𝑃𝑛1 ∘ 𝑃𝑛2
) ≥ 2+ 2 (𝑛1 − 1) =  2𝑛1 − 2.   
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Let 𝑆 = {𝑣1
1, 𝑣𝑛2

𝑛1 , 𝑣1
2, 𝑣𝑛2

2 , 𝑣1
3, 𝑣𝑛2

3 , … , 𝑣1
𝑛1−1, 𝑣𝑛2

𝑛1−1}.   Therefore 𝑆  is a circular set of 𝐺  such that 

𝑐𝑟(𝑃𝑛1 ∘ 𝑃𝑛2
) =  2𝑛1 − 2. c         

Theorem 4.3. Let 𝑐𝑟(𝐻 ∘ 𝐾𝑛2
) = 𝑛1𝑛2, 𝑛2 ≥ 1 and 𝐻 be any non-trivial connected graph  for 𝑛1 ≥

2.  

Proof. Let 𝑉(𝐻c) = {𝑢c1, c𝑢2, … , c𝑢𝑛1}  and 𝑉(𝐾𝑛2) = {c𝑣1, 𝑣c2, … , 𝑣𝑛2}.  Let 𝑉(𝐾𝑛2

𝑖
) =

{𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑛2
𝑖 } (1 ≤ 𝑖 ≤ 𝑛1) be the set of vertices of ith  of 𝐾𝑛2. Thus the set of end vertices of 𝐺 is 

represented as 𝑆 = ⋃ 𝑉(𝐾𝑛2

𝑖
)

𝑛1
𝑖=1 . According to Theorem 1.1, 𝑆 is a subset for every circular set of 𝐺 

and so 𝑐𝑟(𝐻 ∘ 𝐾𝑛2) ≥ 𝑛1𝑛2.  Hence 𝐼𝐷𝑐[𝑆] = 𝑉(𝐺),  𝑆  is a circular set of 𝐻c ∘ 𝐾𝑛2 . Therefore 

𝑐𝑟(𝐻c ∘ 𝐾𝑛2) =  𝑛1𝑛2. c 
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