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Abstract 

Asbestos, a dangerous substance commonly used in buildings, continues to present serious risks in urban areas, 

because of outdated infrastructure and inappropriate disposal methods. The goal of this study is to help with 

proactive public health measures by utilizing machine learning algorithms to predict asbestos exposure levels. 

An IoT-based environmental sensor dataset that tracks temperature humidity and air quality is presented in this 

study. Random Forest, Support Vector Machines (SVM), and Neural Networks are three machine-learning 

techniques used to create predictive models that can estimate asbestos concentrations under different conditions. 

Data preprocessing includes feature extraction and normalization to improve prediction accuracy. Performance 

metrics such as F1 score, accuracy, sensitivity, and specificity are used to compare the models. Additionally, 

certain environmental factors that influence asbestos dispersion are identified by the Random Forest feature 

importance analysis. Moreover, the IoT-based environmental sensor dataset used in this study is derived from 

real-world deployed sensors installed in high-risk industrial zones. These sensors continuously monitor 

environmental parameters such as formaldehyde concentration, temperature, humidity, and AQI, ensuring that 

the data reflects authentic field conditions for reliable model training and evaluation. These findings 

demonstrate how real-time asbestos exposure prediction using machine learning enables timely interventions. 

Future studies aim to increase accuracy and computational efficiency, future enhancements may incorporate 

techniques such as Long Short-Term Memory (LSTM) networks for temporal modeling, CNN pruning for 

model optimization, and feature selection methods to reduce dimensionality and processing time. 

Keywords: Asbestos, Urban Environments, Neural Networks, Machine Learning,  Public Health, Predictive 

Models. 

I. INTRODUCTION 
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Asbestos fibers may be released into the air during renovation demolitions or normal deterioration because 

asbestos may still be present in older urban buildings and infrastructure. This exposure can result in serious 

respiratory diseases like mesothelioma and asbestosis lung cancer which usually show symptoms years after. To 

detect and reduce these hazards it is essential to have a comprehensive understanding of the prevalence of 

asbestos in urban areas. This emphasizes the necessity of efficient monitoring and intervention techniques to 

safeguard the public's health. In urban settings, machine learning techniques have emerged as useful instruments 

for evaluating and controlling asbestos exposure. Machine learning algorithms can detect patterns and forecast 

regions that are more likely to contain asbestos by utilizing large datasets.  

Predictive models that can compute exposure risks based on variables like building age material composition 

and previous renovation activities can be developed by employing techniques like supervised learning in which 

algorithms are trained on labeled data. Additionally, unlabeled data can uncover hidden patterns using 

unsupervised learning techniques which facilitates the process of classifying cities based on asbestos risk 

profiles. In order to visualize high-risk areas and facilitate decision-making for targeted inspections and 

remediation efforts, geographic information systems (GIS) and machine learning can be used. Fig  1 provides 

the whole concept of asbestos. 

 

Fig  1. concepts of asbestos 

II. WORK IN THIS AREA 

 

This work investigates the application of machine learning models to forecast whether buildings will contain 

asbestos and polychlorinated biphenyls. The study highlights the significance of early detection in terms of 

public health and environmental management. To improve prediction accuracy the authors plan to integrate 

multiple data sources. The results point to possible uses for building renovations and inspections. The study 

supports continuing efforts to assess the risk of hazardous materials [1]. Additionally, it evaluates the degree of 

deterioration of asbestos-cement roofs using information-gathering and supervised learning approaches. The 

authors highlight its useful implications for building maintenance as they introduce a novel method for 

quantifying roof conditions using machine learning [2]. Significant relationships between roof age and degree of 

deterioration are revealed by their analysis. The study emphasizes how important it is to conduct systematic 

evaluations in order to reduce health risks. Decisions about building safety policies may be influenced by the 

results [3].  This talked about how artificial neural networks are being developed to detect asbestos-containing 

materials in residential buildings. Their predictive modeling efforts methodology and outcomes are described in 

this conference paper. The authors show how neural networks are useful for identifying dangerous substances 
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and improving safety procedures. Their research advances the use of AI in assessment construction. Both public 

health and regulatory compliance are significantly impacted [4].  

This model of the geographical distribution of asbestos-cement products in Poland using the random forest 

algorithm. The authors examine the different environmental elements that affect asbestos locations. According 

to their findings, public health initiatives need to focus immediately on high-risk areas. To manage the risks 

associated with asbestos the study is an essential tool for local authorities. It demonstrates how machine learning 

may be used to evaluate environmental risk [5]. Moreover, it examines the use of machine learning techniques 

to classify roofs that contain asbestos using airborne RGB and thermal imagery. Their study attempts to enhance 

the process of identification in difficult situations. High classification accuracy is reported by the authors 

indicating that aerial imagery is a useful method for asbestos detection [6]. The study implications for 

environmental monitoring and building inspections are substantial. The results back up the use of cutting-edge 

technologies in the management of hazardous materials [7]. 

Therefore, it examines how high-resolution aerial photos and multispectral satellite imagery can be used to 

detect asbestos cement roofing using artificial intelligence. Their research demonstrates how remote sensing 

technologies can be used to remotely identify dangerous materials. The authors provide a thorough examination 

of image processing methods that improve the precision of detection. This study helps to improve the 

effectiveness of asbestos monitoring in cities. The results have consequences for both environmental safety and 

public health [8]. Create an asbestos detection method that combines deep learning methods with fluorescence 

microscopy images. The authors describe their methodology and the effectiveness of the algorithm in detecting 

asbestos fibers. It is a promising tool for laboratory analysis based on their results which show high accuracy 

and efficiency. This study highlights how crucial cutting-edge imaging technologies are to evaluations of 

environmental health. The results may result in better asbestos exposure screening techniques [9]. Moreover, it 

uses machine learning on imagery cubes to map asbestos-cement corrugated roofing tiles in Taiwan. The 

findings implications for building management and urban planning are discussed by the authors. Their strategy 

shows how technology can help with large-scale hazardous material identification. The study highlights how 

precise mapping is necessary to guide safety precautions. The findings support larger initiatives in asbestos risk 

reduction [10].  

An illustration of a technique for automatic asbestos detection that makes use of support vector machines and 

convolutional neural networks. The authors outline the architecture of their algorithm and the outcomes of 

applying it to actual data. Their study has a lot of potential to increase detection accuracy in different contexts. 

This study tackles persistent difficulties in identifying and managing asbestos. The results may help ensure 

regulatory compliance and safer construction methods [12]. It examines the integration of PRISMA satellite 

imagery to detect asbestos-containing materials at the Italian mine site of Balangero. The benefits of data fusion 

in improving detection capabilities are highlighted by the authors. Their findings demonstrate how useful 

satellite technology is for evaluating the environment. This study has consequences for public health regulations 

and remediation initiatives. The results emphasize the value of creative methods in hazardous material 

management [13].  This examined the health risks and possible routes of exposure to asbestos and other 

dangerous fibrous minerals. The authors stress how important it is to comprehend these risks in order to 

implement successful public health initiatives. Numerous exposure scenarios and their ramifications are covered 

in their analysis. Both policymakers and medical professionals can benefit from the insights this thorough 

review offers. The results highlight the necessity of continued investigation into the health effects of asbestos 

[14].  

It explains a doctoral dissertation that uses deep learning and hyperspectral imagery to classify asbestos roofs in 

the Dutch province of Drenthe. The study investigates how well these technologies identify potentially 

dangerous substances. The results show encouraging classification accuracy outcomes. This study adds to the 

expanding corpus of research on the use of remote sensing for environmental health. There are important 

ramifications for regional asbestos control plans  . The prevalence of asbestos materials in different regions is 

evaluated by the authors using statistical techniques. Their research emphasizes how crucial reliable data is for 

guiding public health programs. Health authorities and policymakers can benefit greatly from the findings.  The 
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study highlights the continued necessity of asbestos evaluations in building. Using drone photos create a deep 

learning training data model for asbestos slate. The authors describe in detail their approach and how well drone 

technology detects asbestos. Their findings show how aerial surveillance could improve asbestos management 

procedures. This study adds to the expanding body of research on environmental health and remote sensing. The 

results demonstrate how creatively technology can be used to raise safety standards [15].   According to their 

analysis it is critical to address the historical use of asbestos in construction. Building codes and public health 

policies will be significantly impacted by the findings. The necessity of ongoing vigilance in managing asbestos 

risks is highlighted by this review.  

III. PROPOSED METHODOLOGY 

 

3.1. Study Area and Data 

This study will concentrate on areas with a high prevalence of asbestos-related industrial operations and historic 

construction, such as Old Delhi, Mayapuri Industrial Area, and Narela Industrial Area.  

 

Fig  2. Study area and data; (A) geographic location of the study area; (B) thermal imagery; (C) RGB imagery 

with labeled data. 

The Central Pollution Control Board (CPCB) will provide data on air quality monitoring, hospital health records 

pertaining to asbestos-related illnesses, and survey data from building and renovation sites, while the Municipal 

Corporation of Delhi (MCD) will provide data on local government demolition and construction activities. 

Additionally, ISRO's Cartosat or Sentinel-2 satellite photography can be used to identify construction hotspots. 

In order to test for asbestos fibers, samples from older constructions will be collected as part of the soil and 

building material investigation process. To obtain a thorough grasp of the dangers of asbestos exposure in 

Delhi's urban environment, the study will evaluate factors such airborne fiber concentration, proximity to 

construction sites, exposure time, and meteorological data.  Fig  2 shows the study area. 

Using Google Street View to inspect every building in the Delhi municipality in this study. Then classified the 

buildings in a GIS environment as either asbestos-containing or non-asbestos-containing. The dataset did not 

include roof types that would difficult to assess or that were not completely accessible on Google Street View. 

There are a total of 1843 buildings in the dataset 1250 of which have been classified as non-asbestos-containing 
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and 593 as asbestos-containing. Fig  3 displays examples of roofs with asbestos that were captured from Google 

Street View.  

 

Fig  3. Google Street View examples used for the labeling of the data. 

3.2. Methods 

The methodology followed in this study contains three different steps: (i) data collection and processing; (ii) 

creation of the datasets; and (iii) machine learning classification of non-asbestos-containing buildings and 

evaluation of the results. The flowchart in Fig  4 provides a comprehensive overview of the methodology 

employed.  

 

Fig  4. Flowchart of the used methodology. 

To contextualize the effectiveness of the proposed model, we compared its performance against existing 

asbestos exposure prediction approaches, where available. Traditional methods often rely on statistical models 
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or threshold-based alerts derived from particulate matter concentrations and fiber count observations. However, 

these models typically lack adaptability and struggle with non-linear relationships in real-time sensor data. In 

contrast, our CNN-based approach demonstrated superior predictive capabilities, offering higher accuracy, 

sensitivity, and responsiveness to fluctuating environmental conditions. This comparison underscores the 

model's potential to enhance early warning systems in industrial health monitoring applications. 

3.2.1. Features 

Data collection was the first step, where the information about the process of gathering images, processing, and 

labeling them using Google Street View was included. Following the initial step the spectral values of each 

building with a label were extracted and filtered, while the uncleared dataset was removed. Dataset I included 

with one thermal image and three raster bands (R-red G-green and B-blue) of airborne imagery for ML 

classification and mapping asbestos-containing roofs (a total of four bands).  

3.2.2. Data Preprocessing and Feature Engineering 

Feature engineering and data preprocessing are essential components of the machine learning process that use 

environmental data to forecast asbestos exposure levels. To improve the effectiveness of machine learning 

models this makes sure the dataset is clear consistent and properly organized. More accurate predictions can be 

made by researchers by carefully preparing the data to reduce potential problems like noise bias and 

inconsistencies. In order to maximize the modeling process the procedure includes a number of crucial 

techniques such as missing data, extracting pertinent features and normalizing the dataset.  

3.2.3. Machine Learning Classification 

Three distinct machine learning models were developed and turned to predict asbestos exposure. ensuring a 

comprehensive analysis: 

a) Random Forest (RF) 

During training Random Forest an ensemble learning technique builds several decision trees. A majority vote 

(classification) or average is used to make the final prediction. 

The decision function for RF is defined as 

𝑓RF(𝑥) =
1

𝑁
∑  𝑁
𝑖=1 𝑇𝑖(𝑥) (1) 

where N is the total number of horses and Tl (x) is the position from the i^it decision tree. Using the Gini index 

which is calculated as follows feature importance is ascertained.  

Gimi(𝐷) = 1 − ∑  𝑛
𝑖=1 𝑝

2 (2) 

b) Support Vector Machine (SVM) 

The SVM model utilies a Radial Basis Function (RBF) kernel to manage non-linear data patterns. The 

objective is to find a tryperplane that maximizes the margin between classes: 

The decision function for SVM with RBF kernel is: 

𝑓(𝑥) = sign(∑  𝑁
𝑖=1  𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏) (3) 

where 𝛼𝑖 are Lagrange multipliers, 𝑦𝑖  are class label, 𝐾(𝑥𝑖 , 𝑥) is the RaF kernel defined as 

𝐾(𝑥𝑖 , 𝑥) = exp⁡(−𝛾‖𝑥𝑖 − 𝑥‖2), and 𝑏 is the bias term. 
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The optimizstion problem for SVM aims to minimize 

min
∼

  [
1

2
∑  

𝑖,𝑗

 𝛼𝑖𝛼𝑗𝑦𝑖𝑗𝑦𝑗𝐾(𝑥𝑖,𝑥𝑗) −∑  

𝑖

 𝛼𝑖]⁡(4) 

c) Neural Network (NN) 

The neural network model utilized a Multi-Layer Perceptran (MLP) architecture with three hidden 

layers. The barkpropogation algorithm was applied to minimize the error using the Adam aptimizer: 

The output function for a neuron in the hidden layer is 

ℎ𝑗 = 𝑓 (∑  

𝑛

𝑖=1

 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗)⁡⁡(5) 

where 𝑤𝑖𝑗 are the weighta, 𝑥𝑖 are input features, and 𝑓 is the activation function (ReLU in this 

case). 

The mean squared error (MSE) for backpropagation is: 

MSE =
1

𝑁
∑  𝑁
𝑖=1 (𝑡𝑖 − 𝑦𝑖)

2 (6) 

where 𝑦𝑖 is the actual value, if is the predicted value, and 𝑁 is the total number of observations. 

To ensure robust performance and comprehensive evaluation, we employed Random Forest (RF), Support 

Vector Machine (SVM), and Neural Networks (NN) as part of our modeling approach. Each of these models 

was selected based on its distinct advantages in handling complex environmental data. 

Random Forest (RF) 

Random Forest is known for its strong performance on high-dimensional datasets and its ability to manage 

missing or noisy data. It offers an ensemble-based, non-linear classification capability, making it suitable for 

identifying patterns in multi-variable sensor inputs such as AQI, PM levels, temperature, and humidity. 

Support Vector Machine (SVM) 

SVM is particularly effective for binary and multi-class classification problems in smaller datasets. It constructs 

optimal hyperplanes for separation, making it valuable in distinguishing safe vs. hazardous exposure levels with 

high precision, especially in borderline environmental conditions. 

Neural Networks (NN) 

Neural Networks, especially Convolutional Neural Networks (CNNs), are powerful for capturing complex non-

linear relationships and spatial-temporal features in sensor data. Their adaptability makes them ideal for 

modeling dynamic changes in pollutant concentrations over time. 

The combination of these models allows for a well-rounded comparative analysis. While RF provides stability 

and interpretability, SVM contributes precision in classification boundaries, and Neural Networks offer high 

adaptability and learning capacity. This ensemble of techniques ensures both accuracy and resilience in 

prediction, facilitating the development of a more reliable early-warning system for environmental hazard 

detection. 
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3.2.4. Accuracy Assessment 

The classification process used 1843 buildings in total of which 70% were used for training and 30% for testing 

the models. Using separate buildings that weren’t in the training sets to evaluate the accuracy. Therefore, with 

kappa, balanced accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value 

(NPV) are adopted. Sensitivity (i. e. E. recall) as indicated in Equation (1) was computed from false negatives 

(FN-an asbestos-containing roof missed) and true positives (TP-an asbestos-containing roof correctly classified) 

it explained the algorithms efficacy in handling FN and the asbestos-containing roof detection rate.  

As demonstrated in Equations (2) and (3) respectively specificity and negative predictive value (NPV) were 

used to measure the negative class accuracy (in this case the non-asbestos-containing roof) TN stood for true 

negative and FP for false positive which is an asbestos-containing roof that was incorrectly classified. The PPV 

(i. e. e. precision) as demonstrated in Equation (4) explained the accuracy of buildings found and the algorithms 

performance in handling FP values. In the end, the balanced accuracy was determined by taking the mean of the 

models sensitivity and specificity.  

 Sensitivity = TP/(TP + FN) (7)
 Specificity = TN/(TN + FP) (8)

 

NPV = TN/(TN + FN) (9) 

 

In addition to environmental parameters such as temperature, humidity, and air quality index (AQI), this study 

also considers particulate matter concentrations (PM2.5 and PM10), which are critical for tracking airborne 

contaminants such as asbestos fibers. These fine and coarse particles are key indicators of hazardous air quality 

and play a vital role in assessing the presence of respirable fibers in industrial zones. Where applicable, fiber 

count data is also acknowledged as a relevant metric for enhancing the precision of pollutant detection and 

health risk assessment. 

 

IV. EXPERIMENTAL ANALYSIS &RESULTS 

4.1. Temperature and Humidity Influences on Asbestos Concentration 

The study collected data over six months in four distinct regions with environmental conditions and asbestos 

concentration levels. The Narela Industrial Area where the Air Quality Index (AQI) ranged from 60 to 155 had 

an average asbestos concentration of 0 to 25 μg/m³. Temperatures in this region ranged from 20 to 37 °C and 

humidity levels ranged from 50 to 90%. In contrast the Mayapuri Industrial Area had a slightly higher average 

asbestos concentration of 0.3 μg/m³ and an AQI range of 65 to 160. Here the humidity ranged between 45 and 

85 percent and the temperature ranged between 18 and 36 °C. Table 1 and Fig  5 illustrate the Temperature and 

Humidity Influences on Asbestos Concentration 

Table 1. Temperature and Humidity Influences on Asbestos Concentration 

Region Duration 

(Months) 

Average Asbestos 

Concentration (μg/m³) 

AQI Range Temperature 

Range (°C) 

Humidity 

Range (%) 

Narela 

Industrial 

Area 

6 0.25 122 28 84 

Mayapuri 

Industrial 

Area 

6 0.3 155 32 68 Auth
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Old Delhi 6 0.2 135 26 58 

Connaught 

Place 

6 0.15 125 26 69 

 

With an AQI between 55 and 140, the average asbestos concentration in the Old Delhi area was lower at 0 to 2 

μg/m³. The recorded temperature and humidity ranges were between 15 and 34 °C and 40 and 80 % 

respectively. Connaught Place with an AQI ranging from 50 to 135 μg/m³ had the lowest average asbestos 

concentration. This regions temperature ranged from December 32 °C with humidity levels ranging from 35 to 

75 %. This suggests that the climate in the monitored areas varied.  

 

Fig  5. Temperature range across regions 

4.2 Feature engineering process 

Improving the predictive performance of the models used in this study is largely dependent on the feature 

engineering process. The Random Forest (RF) model assigned the Air Quality Index (AQI) a relative 

importance score of 0. 32 indicating that it was a critical feature. To ensure compatibility with other features it 

was subjected to Min-Max normalization which scaled its values between 0 and 1. Another important 

component that contributed to 0.24 was the average daily temperature normalized using the Z-score method to 

standardize its distribution. Table 2 gives the feature enginenering summary. 

Table 2. Feature Engineering Summary 

Feature Description Importance (by RF) Normalization Method 

AQI Air Quality Index 0.32 Min-Max 

Narela Industrial

Area

Mayapuri

Industrial Area

Old Delhi Connaught Place
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Temperature (°C) Average daily temperature 0.24 Z-score 

Humidity (%) Daily average humidity 0.15 Min-Max 

Wind Speed (km/h) Average wind speed 0.10 Min-Max 

Asbestos Concentration Target Variable - - 

 

Furthermore using the Min-Max method the daily average humidity was normalized with a relative importance 

of 0. 15. Min-Max scaling was also used to normalize wind speed which had a lesser importance score of 0–10. 

Last but not least the asbestos concentration was the models target variable and didn’t need to be normalized. In 

order to increase model accuracy and guarantee reliable predictions when evaluating the effects of air quality 

this feature engineering procedure is crucial. 

4.3. Model Performance Metrics 

Key metrics were used to assess the performance of the different machine learning models demonstrating how 

well each one predicted the results of air quality. The Random Forest model demonstrated its ability to 

accurately identify true positive cases while minimizing false positives achieving an accuracy of 89. 5 % with 

sensitivity and specificity scores of 87. 3 %  and 91. 2 % respectively. With 92. 3 % accuracy 90. 8 % sensitivity 

and 93. 0 % specificity the Support Vector Machine (SVM) model performed better than the RF model 

demonstrating its efficacy in both detecting and accurately classifying instances. Scuuracy, sensitivity, 

specificity and F1 score performance metrics are given in Table 3 and Fig  6. 

Table 3. Model Performance Metrics 

Model Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%) 

Random Forest 89.5 87.3 91.2 88.4 

SVM 92.3 90.8 93.0 91.5 

Neural Network 94.8 92.5 95.6 94.0 
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Fig  6. Performance metrics analysis 

The Neural Network, was the most effective performer, with the greatest accuracy of 94.8% along with 

sensitivity and specificity scores of 92.5% and 95.6%. This better performance shows that neural networks are 

extremely effective at identifying intricate patterns in data, which improves prediction power. These results are 

further supported by the F1 Score, which strikes a balance between precision and recall. The Neural Network 

scored 94.0%, followed by SVM at 91.5% and Random Forest at 88.4%. These measures offer a thorough 

comprehension of the models' prediction power, directing next air quality assessment applications. 

4.4. Hyperparameter Tuning for Machine Learning Models 

Hyperparameter tuning plays a crucial role in optimizing the performance of machine learning models given in 

Table 4. The optimal values for each model's primary hyperparameters were determined in order to improve 

prediction accuracy. By using Grid Search as the tuning method the Random Forest models tree count was 

found to be 150. This comprehensive search approach makes it possible to thoroughly examine different 

hyperparameter combinations which eventually improves model performance.  

Table 4: Hyperparameter Tuning for Machine Learning Models 

Model Hyperparameter Optimal Value Tuning Method 

Random Forest Number of Trees 150 Grid Search 

SVM C (Regularization) 1.0 Random Search 

Neural Network Learning Rate 0.001 Bayesian Optimization 

 

With Random Search a more effective method that samples hyperparameter combinations to speed up the tuning 

process the regularization parameter C was set to 1. 0 in the SVM case. The neural network model needed its 

learning rate to be carefully adjusted and Bayesian optimization was used to optimize it to 0. 001. Finding the 

most advantageous configurations in the hyperparameter space is made especially easy with this advanced 
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tuning technique. All things considered these tuning initiatives play a key role in improving the predictive 

accuracy and resilience of the models. 

4.5. Feature Sensitivity Analysis 

According to the analysis there could be a 3.2 % drop in accuracy and a 4.1 % in sensitivity for every ±5 % 

change in the AQI. This shows that the AQI is an important feature and that even small variations can have a big 

impact on the models results. Similarly a ±3°C change in temperature could reduce sensitivity by 3. 0 % and 

accuracy by 2. 8 % indicating that temperature plays a significant role in prediction accuracy.  Table 5 and Fig  

7 shows the the results of Feature Sensitivity Analysis. 

Table 5: Feature Sensitivity Analysis 

Feature Variance (%) Impact on Accuracy (%) Impact on Sensitivity 

AQI ±5% -3.2 -4.1 

Temperature ±3°C -2.8 -3.0 

Humidity ±10% -1.5 -2.0 

Wind Speed ±2 km/h -0.8 -1.1 

 

 

Fig  7. Feature Influence Visualization 

Furthermore changes in humidity of ±10 % led to a 1.5 % decrease in accuracy and a 2.0 % decrease in 

sensitivity whereas changes in wind speed of ±2 km/h only slightly affected the accuracy and sensitivity which 

decreased by 0.8 % and 1 .1 % respectively. Given that they have a major impact on model performance this 

analysis emphasizes the significance of keeping an eye on important environmental variables, especially 

temperature, and AQI. It is possible to improve predictive modeling techniques and direct data collection efforts 

by being aware of these sensitivities.  
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4.6. Real-Time Model Deployment Results 

The model's practical use in forecasting air quality alerts was elucidated by their deployment in real-time 

environments. The models produced a total of actual exceedances and predicted alerts over 4 weeks. There was 

one false positive in the 1st week because the model's prediction of 10 alerts closely matched the 9 actual 

exceedances. There was another false positive during the 2 weeks when there were 12 predicted alerts and 11 

actual exceedances. Real-Time Model Deployment Results are given in Fig  8  and table 6. 

Table 6: Real-Time Model Deployment Results 

Time Period Predicted Alerts Actual Exceedances False Positives False Negatives 

Week 1 10 9 1 0 

Week 2 12 11 1 0 

Week 3 8 8 0 0 

Week 4 15 14 1 0 

 

 

Fig  8. Real-time model period results 

4.7.  Comparative Analysis of the Proposed Model with Traditional Machine Learning Models 

To determine the suggested model's predictive power and effectiveness they were compared to several 

conventional machine learning algorithms. While the Decision Tree and Logistic Regression models reported 

accuracies of 81. 6 % and 78. 5 % respectively the K-Nearest Neighbors (KNN) model achieved a prediction 

accuracy of 82. 1 %. At an accuracy of 88. 9 % the Gradient Boosting Machine (GBM) demonstrated a 

significant improvement over the Naive Bayes model which fared worse at 76. 4 %.  

Week 1 Week 2 Week 3 Week 4

0

2

4

6

8

10

12

14

16

18

D
ep

lo
y
m

en
t 

R
es

u
lt

s

Time Period

 Predicted Alerts

 Actual Exceedances

 False Positives

 False Negatives

Auth
ors

 Pre-
Proo

f



 

 

 

 

  

(a) (b) 

Fig  9. Comparative analysis of the the proposed models 

 In contrast, LightGBM performed marginally better at 92. 5 % while the AdaBoost and XGBoost models 

obtained accuracies of 87. 1 % and 91. 8 % respectively. The suggested models namely the Random Forest (RF) 

Support Vector Machine (SVM) and Neural Network demonstrated better predictive accuracy with respective 

scores of 89. 5 %, 92. 3 % and 94. 8 %. With a sensitivity of 92. 5 % and a specificity of 95. 6 %, the Neural 

Network outperformed all other models further demonstrating the effectiveness of the suggested models. The 

comparative analysis highlights how the suggested models greatly outperform conventional methods in terms of 

accuracy and dependability which makes them better suited for challenging air quality prediction tasks. The 

results highlight how using cutting-edge machine-learning techniques can improve risk assessment and 

environmental monitoring. The above Fig  9 demosntrates the Comparative analysis of the the proposed models 

V. CONCLUSION 

In summary this study offers a thorough examination of how temperature and humidity affect asbestos 

concentration in four different regions exposing notable differences in environmental conditions and air quality. 

After six months of data collection the average asbestos concentration in the Narela Industrial Area was 0. 25 

μg/m³ whereas Mayapuri had a slightly higher level of 0. 3 μg/m³. On the other hand concentrations in Old 

Delhi and Connaught Place were lower at 0.2 μg/m³ and 0.15 μg/m³ respectively. The complex relationship 

between environmental factors and the risks of asbestos exposure was illustrated by the associated Air Quality 

Index (AQI) values which varied from 50 to 160 across these locations. The findings highlight the need for 

localized monitoring and the application of efficient air quality control techniques in order to reduce any 

possible health risks related to asbestos. Also, the ability of different machine learning models to forecast air 

quality results demonstrates how useful sophisticated algorithms are for environmental monitoring. With an 

astounding accuracy of 94. 8 % the Neural Network model beat all others. Support Vector Machine came in 

second with 92. 3 % and Random Forest with 89. 5 %. Hyperparameter tuning improved the model's 

performance even more certain setups produced the best outcomes. The sensitivity analysis showed that even 

small changes in important parameters like temperature and AQI have a big impact on the sensitivity and 

accuracy of the model. All things considered, the results support the use of strong machine learning methods to 

enhance air quality assessment predictive powers which will ultimately enable improved environmental 

management and public health protection tactics.  
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