
Optimization Techniques for Machine Learning 

Models to improve the efficiency of Classification 
 

J. Anita Smiles 

Assistant Professor, 

Department of Computer 

Applications, SRM Institute 

of Science and Technology, 

Chennai, Tamil Nadu, India 

anitasmiles7@yahoo.com 

 

M.Sakthivanitha 

Assistant Professor 

Department of Computer Application  

 Vels Institute of Science, Technology & 

Advanced Studies Chennai,     

Tamil Nadu, India.                        

sakthivanithamsc@gmail.com 

 

              

                       A. Bharathi  

Assistant Professor 

Department of Computer Application  

 Vels Institute of Science, Technology & 

Advanced Studies 

 Chennai, Tamil Nadu, India 

bharathial15@gmail.com                          

D. Narayani. 

Assistant Professor 

Department of Computer Applications 

Vels institute of Science Technology and 

Advanced Studies (VISTAS),Tamil Nadu, India. 

narayanivistas@gmail.com 
 

                         S. Sudha 

Professor, 

Department of Computer Applications, 

Hindustan Institute of Technology and 

Science, Chennai, Tamil Nadu, India 

sudhas@hindustanuniv.ac.in 

M.Mohamed Sirajudeen 

Associate Professor, PG and Research 

Department of Computer Science  

Nilgiri College of Arts and Science         

(Autonomous),Thaloor-643239 ,                           

The Nilgiris , Tamil Nadu, India 

 

 

Abstract— The objective of the study is to identify the most 

optimal set of hyperparameters for a machine learning (ML) or 

deep learning(DL) algorithms that improves its performance on a 

certain task.. This study uses five machine learning methods like 

Decision Tree(DT), Random Forest(RF), Gradient Boost 

Models(XGBoost), Support Vector  Machine(SVMs) and K-

Nearest Neighbhor(KNN). The model specific parameters were 

applied to all these ML methods to improve the accuracy of the 

models. The ML models performance with its hyperparameter 

tuning are evaluated for performance using the performance 

metrics like accuracy, precision, Recall and F-score. These 

findings indicate that XGBoost models performed significantly in 

terms of accuracy, precision, recall, and F1-score. Gradient 

boosting models are extremely adaptable, but they are also 

sensitive to hyperparameters such as the learning rate, number of 

estimators, and tree depth. Tuning these parameters can 

dramatically improve performance. The optimal model and 

tuning method are determined by the dataset, task specifications, 

and computing power.. The contribution of the study to suggests 

a suitable with  right hyperparameter settings to develop a highly 

flexible model that can adapt to a variety of datasets. The study 

and application of model-specific hyperparameters in ML 

continues to evolve, resulting to advances that improve 

productivity, durability, and generalization. 

 

Keywords—Machine Learning, Hyperparameter, Optimization, 

Decision Tree(DT), Random Forest(RF), Gradient Boost 

Models(XGBoost), Support Vector  Machine(SVMs) and K-Nearest 

Neighbhor(KNN). 

I. INTRODUCTION 

The hyperparameters of a learning algorithm are the values 
that govern the process of learning and decide the final 
parameters of the models. The goal of hyperparameter 
optimization(HPO) is to find the ideal hyperparameter settings 
so that you can receive good results from data as rapidly as 
possible. Machine learning(ML) is based on algorithms that 
adjust to changing settings and improve their respective 
efficiency over time. Hyperparameter adjustment is a vital step  

 

in enhancing the effectiveness as well as performance of  
ML or Deep Learning(DL) models. Considering the enormous 
dimensionality of hyperparameter spaces and the 
computational cost of training deep models, efficient 
optimization strategies are critical. Properly calibrated 
hyperparameters have a direct impact on the model's ability to 
learn patterns from data, generalize to new data, and meet 
specific criteria for real-world applications. Learning rate, 
batch size, and regularization strength are all important 
hyperparameters that affect a model's capacity to converge to 
an optimal solution[1]. 

 A model that is overly sophisticated or lacks proper 
regularization works well on training data but poorly on 
validation/test data (overfitting). When the model is too 
simplistic or hyperparameters such as learning rate or 
maximum depth are not properly specified, it fails to reflect 
the data's complexity (underfitting).Proper hyperparameter 
adjustment ensures that model intricacy and generalization are 
balanced. Models with hyperparameters that are optimized can 
scale efficiently to huge datasets or high-dimensional issues 
without experiencing severe performance deterioration.  

Advanced models such as transformers, convolutional 
neural networks (CNNs), and gradient boosting machines 
(GBMs) frequently rely extensively on hyperparameters for 
performance. Some algorithms (e.g., decision trees, random 
forests) can be simplified by changing hyperparameters such 
as the maximum depth or minimum samples per leaf without 
losing performance, hence enhancing interpretability. 
Hyperparameters might include model-specific, regularization, 
feature selection, and optimization parameters. This research 
focuses on assessing the effectiveness of model-specific 
hyperparameters (MSHs). MSHs are hyperparameters that are 
specific to one type of ML or DL algorithm. Hyperparameters 
influence the model's architecture, behavior, and optimization 
process, all of which have a substantial impact on 
performance. Common hyperparameters for models include 
learning rate, number of layers, number of neurons per layer, 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1399



and so on.  Hyperparameters have a significant impact on how 
well ML models perform with unseen, out-of-sample data.The 
study of model-specific hyperparameters is important to 
significantly increase the efficacy of the models and to build a 
optimized ML models. The major contributions of the study is 
to  

 Identify and  explore the  MSH’s for ML models to 
improve the performance of the models  

 Evaluate the ML models like DT, RF, XGB, SVM and 
KNN  with and without hyperparameter settings to 
suggest an effective ML model. 

II. LITERATURE SURVEY 

Arnold et al., 2024 demonstrate the risks of ignoring model 
and tuning transparency when comparing machine learning 
models' capacity to forecast electoral violence from tweets. 
Hyperparameter tuning and documentation should be included 
as normal components of robustness assessments for ML 
models[2]. 

Bakere et al., 2024 discuss the critical relevance of 
hyperparameter optimization in complex machine learning 
models, specifically image classification tasks. Given the 
impracticality of manual tuning in the face of increasing 
complexity, the study thoroughly examines eight automated 
the optimization methods: grid search, random search, 
Gaussian process Bayesian optimization (BO), Tree 
Parzenestimator BO, Hyperband, BO/Hyperband hybrid, 
genetic algorithms, and particle swarm optimization. 
Assessments consider a variety of model topologies and 
performance criteria, including accuracy, mean squared error, 
and optimization time[3]. 

Raiaan et al., 2024 investigate a variety of widely utilized 
strategies, including metaheuristic, statistical, sequential, and 
numerical approaches, for fine-tuning CNN hyperparameters. 
Our study provides a comprehensive classification of these 
HPO  techniques and explores into the core notions of CNN, 
describing the role of hyperparameters and their modifications. 
Furthermore, an extensive literature study of HPO methods in 
CNN that use the aforementioned algorithms is conducted[4]  

Hyperparameters are crucial for measuring prediction 
performance in ML models. To avoid extremes, they maintain 
a balance between overfitting and underfitting of research-
independent variables. Manual tuning and automated 
procedures are used to determine the ideal combination and 
permutation for the model's performance. Li et al., 2024 
investigates the pursuit of the optimum fit using different 
hyperparameters[5].  Fine-tuning hyperparameters for ML 
algorithms is a computational difficulty due to the problem 
space's vast size. It emphasizes MSH’s as an important topic 
of study for both practitioners and scholars[6]. 

III. PROPOSED METHODOLOGY 

Model-specific hyperparameters are variables or 
configurations that are customized to a particular ML or DL 
model. unlike generic hyperparameters (such as learning rate 
and batch size), these specialized parameters are strongly 
related to the model's basic framework or algorithm and have 
a direct impact on how the framework learns or acts. Each 

type of ML model has distinct hyperparameters that affect its 
performance. 

A.  Decision Trees  

Decision trees are a common ML model for classification and 
regression tasks. Their efficacy and comprehensibility are 
largely dependent on the correct calibration of MSH’s. The 
key parameters of DT models are as follows 

Maximum depth refers to the maximum number of layers in 
the tree. A deeper tree enables for more complicated patterns 
to be captured, but it also increases the risk of overfitting. A 
smaller depth reduces overfitting but may result in 
underfitting. Experiment with different settings to find the 
right mix between bias and variance. 

Minimum number of samples needed to split an internal node. 
Larger values create broader splits, which reduces overfitting 
but may miss smaller patterns. Smaller values allow for deeper 
growth, but they may lead to overfitting.  

Minimum Samples Leaf. The minimal number of samples 
necessary for a leaf node. Larger values lead to less splits and 
simpler trees. Smaller numbers can capture finer information 
but may result in overfitting. It is to be set in proportion to the 
dataset's size  

Maximum Features: The maximum amount of features used to 
determine the optimal split. Lower values have lower 
computational cost and the risk of overfitting, but they may 
miss significant splits. Larger values offer for greater feature 
selection options, but they also raise the risk of overfitting.  

Criteria: The criteria used to assess the quality of a split. Gini 
impurity is an often used option. Gini impurity, entropy, and 
MSE. 

Splitter: This approach determines the split at each node. The 
options include Best and Random. 

The maximum number of leaf nodes in a tree restricts the 
number of terminal nodes, preventing overfitting. 

Class Weight: Weights connected with classes to manage class 
imbalance, which assists in boosting accuracy for minority 
classes.[7] 

B. Random Forests 

Random Forests are learning models that aggregate numerous 
decision trees' forecasts to improve accuracy, durability, and 
generalizability. A RF model's performance is highly 
dependent on its hyperparameters. 

Gradient Boosting Models Number of Estimators:  It 
represents the total number of decision trees and A bigger 
number of trees improves performance by lowering variation, 
but it also increases training time. Too many trees can lead to 
declining benefits and higher computing cost (0 to 1000). 

Maximum Depth: The maximum depth of each tree. Deeper 
trees allow more complex patterns to be captured but increase 
the risk of overfitting(5 to 50) 

Minimum Samples Split: The smallest number of samples 
necessary to split an internal node. Larger values keep the tree 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1400



from oversplitting, which reduces overfitting. Smaller 
numbers allow the tree to grow deeper, potentially overfitting 
(2, 5, 10). 

Minimum Samples Leaf: The minimal number of samples 
necessary at each leaf node. Larger values result in simpler 
trees and assist in avoiding overfitting. Smaller numbers allow 
capturing finer features, but may lead to overfitting. (1-10) 

Maximum Features : The maximum amount of features to 
evaluate while determining the optimum split. Smaller values 
minimize the complexity of models and overfitting, but they 
may miss key characteristics. Larger values add complexity 
and raise the risk of overfitting. 

Bootstrap: Whether to create each tree using bootstrapped 
samples. Randomness, when set to True (the default), 
increases tree diversity while decreasing overfitting and set to  
False, all trees are trained on the same dataset, which reduces 
randomness while enhancing correlation. 

Class Weights: Weights are allocated to classes to address 
class imbalance. It helps to keep the algorithm from being 
skewed towards the majority class. 

Maximum Leaf Nodes : Reduces the amount of leaf nodes in 
each tree. It minimises overfitting by reducing the tree 
structure. It may impede the model's capacity to learn intricate 
patterns. 

Minimum Impurity Decrease :  A node will only be divided if 
the impurity decrease is at least this value . It reduces 
overfitting by discarding splits with insufficient information 
gain. 

Random State:  Description A seed for the random number 
generator. It assures that the results are reproducible [8,9]. 

C. Gradient Boosting Models  

Gradient Boosting Models (GBMs) are collaborative methods 
that construct decision trees in a sequential order, with each 
tree attempting to fix the faults of the preceding one. The 
hyperparameters unique to GBMs govern the characteristics of 
individual trees, the boosting process, and overall complexity 
of the model[10]. 

Maximum Depth: The maximum depth of a tree. Larger depth 
allows for the capture of more complicated patterns, but it also 
increases the risk of overfitting. Deeper trees are faster and 
less prone to overfitting, but they may also underfit. 

Minimum Samples Split / Minimum Data in Leaf: The 
minimum amount of samples needed to split a node. Larger 
numbers avoid over-splitting and overfitting, whereas smaller 
values allow trees to develop deeper and capture more features 
(2-20). 

Number of Leaves: The maximum number of leaves in a tree. 
More leaves complicate the model and increase the danger of 
overfitting, whereas fewer leaves simplify the model and 
reduce the likelihood of overfitting. 

Subsample: The proportion of training data utilized to create 
each tree. Values less than 1 introduce randomization to avoid 

overfitting, whereas values around 1 employ more data per 
tree, boosting accuracy but raising overfitting risk (0.5-1). 

Learning Rate: Reduces the impact of each tree. Smaller 
values result in slow but more precise learning, while bigger 
values cause the model to learn quickly but risk overshooting 
(0.01-0.3). 

Number of Estimators: The total number of tree and larger 
number of trees enhances accuracy but increases training time 
and the risk of overfitting, whereas too few trees may underfit 
the data (100-1000). 

Boosting Type: Gradient Boosting, Dart, and GOSS 

L1 and L2 Regularization penalizes leaf weights to prevent 
overfitting and bigger values. reduce overfitting, and smaller 
numbers give more flexibility but risk overfitting (0–10) 

Minimum Loss Reduction: The minimum amount of loss 
required to split further. Larger values inhibit splitting nodes 
with minimal gain, whereas smaller values encourage finer 
splits, which adds complexity.(0-1) 

Column subsampling refers to the fraction of features used for 
each tree. Smaller numbers introduce unpredictability, 
minimizing overfitting, whereas bigger values use more 
features, raising the danger of overfitting(0.5-1). 

Column Subsampling by Level: The fraction of characteristics 
used at each tree level (XGBoost-specific). Adds an extra 
layer of unpredictability to tree creation. 

Feature Fraction is equivalent to column subsampling for 
LightGBM(0.5-1). 

Random Seed: Regulates randomness for reproducibility, 
ensuring consistent outcome 

Objective function is the loss function that is optimized during 
training. 

Verbosity refers to the level of output logging.It manages 
debugging and monitoring while training . 

D. Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are supervised learning 
models commonly used in classification, regression, and 
outlier detection. The performance of SVM is heavily 
influenced by the hyperparameters used, which govern the 
operation of the decision limit, kernel operation, and the 
optimization procedure [11]. 

Regularization Parameter: Specifies the trade-off between 
achieving a low error on training data and increasing the 
margin (0.0001–1000). 

Kernel Type: A function that converts input data to a higher-
dimensional space. The kernel contains linear, poly, rbf, and 
sigmoid. 

Gamma: Measures the impact of a single training example. 

Degree denotes the degree of the polynomial kernel function. 
Higher degrees enable collecting more complicated patterns, 
but require processing and the danger of overfitting (2-5). 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1401



Class Weight: Changes the penalty for misclassifying classes 
to solve class imbalance. The options include none, balanced, 
and user-defined.  

Probability: Allows for probability estimates by completing 
extra calculations during training. It is useful for applications 
that require probability values rather than class labels, but it 
increases training time. 

Tolerance is the terminating criterion for an optimization 
process. Smaller values produce accurate outcomes but 
increase training time, whereas bigger values accelerate 
training at the expense of potentially inferior solutions 
(0.0001-0.01). 

Shrinking Heuristic: Indicates if the shrinking heuristic is 
employed to accelerate training. True indicates faster 
convergence, while False indicates somewhat better results but 
slower training. 

Decision Function: Defines how the decision boundary is 
determined for multiclass problems. 

Kernel Coefficient: Limits the impact of higher-order terms in 
polynomial and sigmoid kernels, with higher values increasing 
the model's complexity (0-1). 

E. K-Nearest Neighbhor 

K-Nearest Neighbors (KNN) is a basic but powerful non-
parametric technique for classification and regression. Its 
performance is heavily impacted by hyperparameters that 
control how neighbors are chosen and weighted[12].  

Number of Neighbors: The number of nearest neighbors to 
consider when generating forecasts. For smaller values of 
n_neighbors, the model appears sensitive to noise and more 
prone to overfitting, whereas for bigger values of n_neighbors, 
the model becomes more refined and robust but risks 
underfitting (3-20). 

Metric: Indicates how distances between points are estimated. 
The possibilities include Euclidean, Manhattan, Minkowski, 
Hamming, and custom values. Depending on the feature 
distribution, alternative distance metrics may represent 
relationships in the data more effectively. 

Minkowski Power Parameter:  Defines the power parameter 
for the Minkowski distance(1-3 ) 

Weights: Determines how much the neighbors contributes to 
the prediction. The options are uniform, distance, and user-
defined. The uniform option is suited for equally dispersed 
datasets, and in terms of distance, closer neighbors have larger 
influence. 

Algorithm:  The technique used to find the nearest neighbors. 
The possibilities are: auto, ball_tree, kd_tree, and brute. The 
Ball Tree and KD Tree are faster for large datasets, although 
their performance is dimensionally dependent. 

Leaf Size: The number of points in a leaf in Ball Tree or KD 
Tree algorithms. The smaller values of these parameters are 
more exact but slower computations, whilst the bigger values 
are faster but may diminish accuracy (20-50). Table 1 lists the 

model specific  key parameters for the ML models liks dT, 
RF, XGB, SVM and KNN 

Table 1 Common model specific parameters of  ML models 

Decision 

Tree(DT) 

Rando

m 

Forests(

RF) 

Gradient 

Boosting 

Models(

XGB) 

Support 

Vector 

Machines(

SVM) 

 

K-Nearest 

Neighbhor(

KNN) 

Maximu

m Depth 

Numbe

r of 

Estimat

ors  

Learning 

Rate  

Regularizat

ion 

parameter 

Number of 

Neighbors 

Minimum 

samples 

split 

 

Maxim

um 

Depth 

Number 

of  

Estimator

s 

Kernel 

type 

e.g., linear, 

rbf, poly, 

sigmoid 

Metrics((e.

g., 

Euclidean, 

Manhattan, 

Minkowski

) 

Minimum 

samples  

leaf 

Minimu

m 

samples 

split 

 

Maximu

m Depth 

Gamma- 

Kernel 

coefficient 

for rbf, 

poly, and 

sigmoid 

kernels 

Weights 

Criterion(

Gini, 

Entrpoy) 

Minimu

m 

samples  

leaf 

Minimum 

samples 

split 

 

Gamma 
             

Algorithm 

Maximu

m 

Features 

Maxim

um 

Feature

s 

Sub 

sample  

Class 

Weight 
Leaf Size 

Splitter 
Bootstr

ap 

Number 

of Leaves 
Probability  

Parallel 

Processing  

Maximun 

Leaf 

Nodes 

Class 

weights 

Learning 

Rate 
Tolerance - 

Class 

Weight 

Maxim

um leaf 

nodes 

Number 

of 

estimator

s  

Shrinking 

Heuristic 
- 

- 

 

Minimu

m 

Impurit

y 

decreas

e 

Boosting 

type 

Decision 

Function 
- 

- 
Rando

m State 

L1 and 

L2 

Regulariz

ation 

Kernel 

Coefficient  
- 

- - 

Column 

subsampl

ing 

- - 

- - Column - - 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1402



subsampl

ing per 

level 

- - 
Feature 

Fraction 
- - 

- - 
Objective 

function 
- - 

- - Verbosity - - 

 
IV. RESULTS AND DISCUSSION 

      The tests were conducted in Python, and this work used 
two datasets (CIC-IDS2017, UNSW-NB15)[13] to assess the 
performance of hyperparameter tuning in DT, RF, XGB, 
SVM, and KNN. This study used performance metrics 
including as accuracy, precision, recall, and the F1-score.To 
establish these parameters, data on the distributions of true 
positives (TP), false positives (FP), and false negatives (FN) 
are required. 

 Accuracy refers to the proportion of correctly identified 

samples (positive and negative) out of the total number of 

samples. 

         
     

           
                             (1) 

 

 Precision:  How many anticipated positives are actually 

positives? 

          
  

     
      (2)                                         

 Recall (Sensitivity : How many genuine positives were 

successfully identified? 

       
  

     
        (3)                                                

 F1-score: The harmonic mean of precision and recall. 

            
                

                
    (4)                      

 able 2 (a) : Performance metrics of the ML models 

Methods/M

easures 

Accuracy Precision 

Without 

hyperpara

meter 

tuning 

With 

hyperpara

meter 

tuning 

Without 

hyperpara

meter 

tuning 

With 

hyperpara

meter 

tuning 

DT 0.86 0.96 0.905263 0.974359 

RF 0.865 0.905 0.910526 0.926316 

XGB 0.89 0.93 0.951872 0.952632 

SVM 0.85 0.895 0.909091 0.925134 

KNN 0.855 0.9 0.919355 0.930481 

 able 2 (b) : Performance metrics of the ML models 

Methods/M

easures 

Recall F1-Score 

Without 

hyperpara

meter 

tuning 

With 

hyperpara

meter 

tuning 

Without 

hyperpara

meter 

tuning 

With  

hyperpara

meter 

tuning 

DT 0.971751 0.989583 0.93733 0.981912 

RF 0.97191 0.972376 0.940217 0.948787 

XGB 0.962162 0.973118 0.956989 0.962766 

SVM 0.965909 0.96648 0.936639 0.945355 

KNN 0.960674 0.966667 0.93956 0.948229 

 

Table 2 shows the performance measures values of DT, RF, 

XGB, SVM and KNN ML models with and without hyper-

parameter settings .The percentage of accuracy, precision , 

recall and f1-Scores is found to be less before the 

hyperparameter tuning.  Moreover, the XGB models 

performance with hyperparameters yields better results than 

the RF, SVM  and KNN.  

 

 
Figure 1.  Performance Measures for Decision tree 

model(With and Without byperparameters) 

Figure 1 depicts a graphical representation of the DT model's 

performance in analyzing model efficiency before and after 

hyperparameter settings. It is apparent that the effectiveness of 

data classification is higher for all evaluation parameters that 

include the essential hyperparameters of DT approaches.  

0.86 

0.96 

0.905263 

0.974359 0.971751 
0.989583 

0.93733 

0.981912 

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
  h

yp
er

p
ar

am
et

er
  

Accuracy Precision Recall F1-Score 

DT 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1403



 
Figure 2. Performance Measures for Random Forests(RF) 

model(With and Without byperparameters) 

RF performance can improve dramatically after 

hyperparameter tweaking since it is largely reliant on critical 

parameters that determine the quantity, depth, variety, and 

decision-making of trees in the ensemble. Figure 2 shows the 

RFs model's performance in measuring model efficiency 

before and after hyperparameter changes. It is clear that the 

effectiveness of data categorization is greater for all 

assessment factors, including the critical hyperparameters of 

the RF technique.. 

 
Figure 3.  Performance Measures for XGB model(With and 

Without hyperparameters) 

Figure 3 depicts the XGB model's performance in estimating 

model efficiency before and after hyperparameter adjustments. 

Data classification clearly outperforms all assessment 

variables, including the XGB technique's crucial 

hyperparameters. 

 
Figure 4.  Performance Measures for Support Vector 

Machine(SVM) (With and Without byperparameters) 

SVM are extremely effective at classification and regression 

tasks, but their performance is significantly dependent on 

hyperparameter settings. Figure 4 depicts the SVM model's 

performance in terms of model effectiveness prior to and 

following hyperparameter adjustments. All evaluation criteria, 

including the critical hyperparameters of the SVM technique, 

clearly demonstrate that data classification is more effective. 

 
Figure 5.  Performance Measures for K-Nearest Neigbhor 

Model(KNN)(With and Without byperparameters) 

0.865 

0.905 0.910526 
0.926316 

0.97191 0.972376 

0.940217 0.948787 

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
  h

yp
er

p
ar

am
et

er
  

RF 

0.89 

0.93 

0.951872 0.952632 
0.962162 

0.973118 
0.956989 0.962766 

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 

h
yp

er
p

ar
am

et
er

  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 

h
yp

er
p

ar
am

et
er

  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 

h
yp

er
p

ar
am

et
er

  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
  

h
yp

er
p

ar
am

et
er

  

Accuracy Precision Recall F1-Score 

XGB 

0.85 

0.895 
0.909091 

0.925134 

0.965909 0.96648 
0.936639 0.945355 

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
  h

yp
er

p
ar

am
et

er
  

Accuracy Precision Recall F1-Score 

SVM 

0.855 

0.9 
0.919355 

0.930481 

0.960674 0.966667 

0.93956 0.948229 

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
 h

yp
er

p
ar

am
et

er
  

W
it

h
o

u
t 

h
yp

er
p

ar
am

et
er

  

W
it

h
  h

yp
er

p
ar

am
et

er
  

Accuracy Precision Recall F1-Score 

KNN 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1404



The performance of the KNN algorithms before and after 
hyperparameter adjustment frequently varies dramatically due 
to the model's sensitivity to its hyperparameters. After 
hyperparameter optimization, KNN improves prediction 
accuracy and robustness significantly, although these benefits 
may come at the expense of slightly lower computational 
efficiency during inference. Proper tuning, when combined 
with approaches such as dimensionality reduction or efficient 
data structures, can successfully balance accuracy and 
processing costs. Figure 5 depicts the KNN model's 
performance in terms of model effectiveness before and after 
hyperparameter changes. All evaluation criteria, including the 
essential hyperparameters of the KNN approach, show that 
data categorization is more effective. 

      Gradient boosting models are extremely adaptable, but 
they are also sensitive to hyperparameters such as the learning 
rate, number of estimators, and tree depth. Tuning these 
parameters can dramatically improve performance. These 
models feature several hyperparameters (e.g., learning rate, 
number of trees, max depth) that affect complexity and 
regularization, and their success is frequently closely related to 
fine-tuning. Hyperparameter tweaking has the greatest 
influence on sophisticated models such as Gradient Boosting 
(XGBoost, LightGBM), and Neural Networks. These models 
are extremely adaptable and can handle a wide range of 
datasets, but their success is greatly dependent on determining 
the proper settings. Hyperparameter adjustment has a smaller 
influence on simpler models, such as Naive Bayes or Logistic 
Regression. 

                          V.  CONCLUSION 

This study employs five ML techniques: DT, RF, XGB, 
SVM and KNN. All of these ML algorithms were given 
model-specific parameters in order to increase their accuracy. 
The performance of ML models with hyperparameter tuning is 
measured using measures such as accuracy, precision, recall, 
and F-score.The results suggest that XGBoost models perform 
better in terms of accuracy, precision, recall, and F1-score. 
Furthermore, the proper model and tuning method are 
determined by the dataset, task requirements, and computing 
power. HPO is critical for developing efficient, accurate, and 
generalizable machine learning models. By methodically 
tuning hyperparameters, practitioners may ensure that their 
models perform optimally, adapt to varied tasks, and function 
within resource restrictions. This phase is essential for 
effectiveness in both practical applications and research. 

 

REFERENCES 
 

[1] El-Hassani, F.Z., Amri, ., Joudar, NE. et al. A New Optimization Model 

for MLP Hyperparameter Tuning: Modeling and Resolution by Real-
Coded Genetic Algorithm. Neural Process Lett 56, 105 (2024). 

https://doi.org/10.1007/s11063-024-11578-0 

[2] Arnold C, Biedebach L, Küpfer A, Neunhoeffer M. The role of 
hyperparameters in machine learning models and how to tune them. 

Political Science Research and Methods. 2024 Oct;12(4):841-8. 

[3] Bakare KA, Abubakar SI, Naveen AY, Abdullahi AJ, Gaku MS, Asmau 
U, Ahmad S. Streamlining the Path from Data to Deployment: 

Intelligent Methods for Hyperparameter Tuning in Machine Learning. 

Bima Journal of Science and Technology. 2024 Sep 2;8(2A):192-210. 

[4] Raiaan MA, Sakib S, Fahad NM, Al Mamun A, Rahman MA, Shatabda 
S, Mukta MS. A systematic review of hyperparameter optimization 

techniques in Convolutional Neural Networks. Decision Analytics 

Journal. 2024 Apr 24:100470. 
[5] Li L, Yang J, Por LY, Khan MS, Hamdaoui R, Hussain L, Iqbal Z, 

Rotaru IM, Dobrotă D, Aldrdery M, Omar A. Enhancing lung cancer 

detection through hybrid features and machine learning hyperparameters 
optimization techniques. Heliyon. 2024 Feb 29;10(4). 

[6] Wojciuk M, Swiderska-Chadaj Z, Siwek K, Gertych A. Improving 

classification accuracy of fine-tuned CNN models: Impact of 
hyperparameter optimization. Heliyon. 2024 Mar 15;10(5). 

[7] Gomiasti FS, Warto W, Kartikadarma E, Gondohanindijo J. Enhancing 

Lung Cancer Classification Effectiveness Through Hyperparameter-
Tuned Support Vector Machine. Journal of Computing Theories and 

Applications. 2024 Mar 25;1(4):396-406. 

[8] Liao M, Wen H, Yang L, Wang G, Xiang X, Liang X. Improving the 
model robustness of flood hazard mapping based on hyperparameter 

optimization of random forest. Expert Systems with Applications. 2024 

May 1;241:122682. 

[9] Habib MA, Abolfathi S, O’Sullivan JJ, Salauddin M. Efficient data-

driven machine learning models for scour depth predictions at sloping 

sea defences. Frontiers in Built Environment. 2024 Feb 9;10:1343398. 
[10] Kavzoglu, Taskin, and Alihan Teke. "Advanced hyperparameter 

optimization for improved spatial prediction of shallow landslides using 

extreme gradient boosting (XGBoost)." Bulletin of Engineering Geology 
and the Environment 81, no. 5 (2022): 201 

[11] Guido, Rosita, Maria Carmela Groccia, and Domenico Conforti. "A 

hyper-parameter tuning approach for cost-sensitive support vector 
machine classifiers." Soft Computing 27, no. 18 (2023): 12863-12881. 

[12] Assegie, Tsehay Admassu, Tamilarasi Suresh, Raguraman 

Purushothaman, Sangeetha Ganesan, and Napa Komal Kumar. "Early 
prediction of gestational diabetes with parameter-tuned K-Nearest 

Neighbor Classifier." Journal of Robotics and Control (JRC) 4, no. 4 

(2023): 452-457. 
[13] https://www.kaggle.com/datasets/yasiralifarrukh/unsw-and-cicids2017-

labelled-pcap-data 

 

Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2025)
DVD Part Number: CFP25F70-DVD; ISBN: 979-8-3315-1223-1

979-8-3315-1224-8/25/$31.00 ©2025 IEEE 1405

https://doi.org/10.1007/s11063-024-11578-0

