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Abstract
The automated detection of tomato ripeness is critical in cropmanagement and harvesting. Inmost
earlier works, tomato image ripeness detection has been based upon a limited set of images and binary
classification (ripe and unripe). This study uses the cutting-edge YOLOv8 object detection algorithm
and a comprehensive dataset to propose an accurate real-time system for detecting and classifying
tomato ripeness (multi-class). Based on two open-source datasets (Kaggle and Internet-sourced), we
developed and tested the proposed system. In thismethod, a comprehensive tomato image dataset is
curated, YOLOv8models are built, seamlessly integrated into an embedded system (Raspberry Pi4),
then evaluated and validated. Themodel shows exceptional performance in detecting three distinct
classes of ripeness: unripe, partially ripe, and ripe. It surpasses existing state-of-the-artmodels in both
accuracy and efficiency. Based on theKaggle dataset, ourmodel achieves an average precision at 50 of
0.808, with F1-scores of 0.80, 0.65, and 0.796 for unripe, partially ripe, and ripe classes, respectively. It
achievesmAP at 50 of 0.725 and F1-scores of 0.747 (unripe), 0.652 (partially ripe), and 0.72 (ripe) for
the corresponding classes of the Internet-sourcedDataset, exceeding current state-of-the-artmodels.
Finally, the proposed tomato ripeness detection algorithm is implemented on the Raspberry Pi 4
system and exhibits notable performance.With the integration of YOLOv8 into an embedded system
(Respbeery Pi4), it can be used to improve efficiency and reduce labor costs in tomato-picking robots,
helping to revolutionize agricultural practices.

1. Introduction and relatedworks

The tomato (SolanumLycopersicon L.) is one of theworld’smost important cash crops and the second largest
crop in theworld [1]. There is an abundance of potassium, folate, fiber, and vitamins A, C, andK in tomatoes.
Tomato consumption has also been linked to a reduced risk of certain cancers, cardiovascular disease,
osteoporosis, and other conditions [2]. Furthermore, tomatoes are also deeply rooted in their native Latin
America andmany other regions around theworld. Furthermore, they play an important role in classic Italian
dishes. Therefore, understanding the tomato crop’smaturity stage is imperative for several reasons. These
include determining which tomatoes should be shipped first and stored for the longest period. In addition to
this, tomatoes are a type of product whose color characteristics are heavily relied upon to recognize their
maturity level. Due to the amount of labor involved, picking themby hand takes considerable time, effort, and
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money. Due to theworldwide trend of an aging population, high labor costs and a shortage of available workers
aremajor issues in today’s economy. A personwith formal tomato sorting training should be employed to
perform this task. Individual differences in sorting abilitiesmake thismethod unreliable. By developing tomato
ripeness-based detection systems, smart farmmachinery will be able to harvest tomatoes automatically, apply
drugs in targetedways, andmany other tasks. Artificial Intelligence (AI) advances will also allowpreviously
labor-intensive tasks to be automated, such as picking [3]. The accuracywithwhich a robot’s vision system can
locate objects directly relates to its ability to pick themup. In recent decades, non-destructive computer vision
has been used in the food industry and precision agriculture for inspecting and grading produce including fruits
and vegetables [4–6]. A tomato’s color characteristics are strongly correlatedwith itsmaturity; therefore,
computer visionmay be able to assess tomatomaturity by analyzing its color characteristics. Therefore, one of
themost crucial aspects of automatic fruit harvesting is accurately detecting ripe fruits based on their color in
their natural habitat.

The past few decades have seen a plethora of detection and classificationmethods being developed, butmany
of thesemethods need to bemore precise and reliable [7–17]. Consequently, this poses a significant challenge to
thewidespread use of sorting robots in industry. Fruit detection algorithms are becomingmore likely to be
successful as Computer Vision,Machine Learning, andDeep Learning technologies improve. Liu et al developed
amethod for detecting tomatoes based onYOLOv3, which incorporates dense architecture but replaces a
rectangular bounding boxwith a circular bounding box (CBbox) [18].Meanwhile, the author developed a
CBbox that outperformed the Intersection-over-Union (IoU) forNon-MaximumSuppression (NMS). There
were 966 images containing 3,465 tomatoes collected by the authors. Theirmodel was trained on 725 images
(2,553 tomatoes) and tested on 241 images (912 tomatoes). In their study, they achieved a precision of 94.75%, a
recall of 93.09%, an F1-score of 93.91%, and anAverage Precision (AP) of 96.4%.Magalhães et al employed five
deep learningmodels: SSD (Single-ShotMultiBoxDetector)—MobileNetv2, SSD—InceptionV2, SSD—
ResNet50, SSD—ResNet101, andYOLOv4 tiny architectures, to detect tomatoes in various conditions such as
occluded, overlapped, and so on [19]. The researchers collected 297 images with three classes (unripe, reddish,
and red tomatoes) fromunripehouses. They then augmented the images to create 23,021 images. In terms of
precision, recall, f1-score, andmeanAP (mAP), SSD-MobileNetv2 produced the highest values of 84.37%,
54.4%, 66.15%, and 51.46%, respectively.

The YOLOv3, YOLOv4, YOLODenseNet, andYOLOMixNetmodels were also developed by Lawal to detect
tomatoes in occlusion, clusters of tomatoes, illumination variation, and shading conditions [20]. The authors
captured 1,698 images and performed data augmentation to create 5,147 images. Only ripe and unripe classes
were examined, andYOLOMixNet had the best IoU, recall, andmAP,whichwere 77.7%, 91%, and 98.4%,
respectively. By fusing residual neural networks fromYOLOv4withR-CSPDarknet53, Zheng et al developed a
newbackbone network to detect tomatoes in the natural environment [1]. In addition, Contextual Spatial
Pyramid Pooling (C-SPP) has been proposed to enable feature information reuse andmulti-scale fusion. A total
of 1,698mature and immature tomato images were captured for the training of theirmodels. They obtained
precision, recall, andmean accuracy of 87.6%, 88.79%, and 94.45%, respectively. Su et al proposed a different
approach to detect four types of tomatomaturity, namely SYOLOV3-MobileNetV1, based on depth-wise
separable convolutions and squeeze and excite attentionmechanisms [5].Moreover, they usedmosaic data
augmentation, K-means clustering, and SEmethods to improve the accuracy of theirmodels. As part of the
preprocessing, they used data augmentation to create 5,147 synthetic images to train theirmodels, resulting in
an optimistic F1 of 94.9% and amAPof 97.5%.

AYOLOV5 frameworkwas constructed by Egi et alusing three separate networks: CSPDarknet as the
backbone, PANet as the neck, and the YOLOLayer as the head for detecting tomatoes without considering any
conditions [21]. In order to count tomatoes, theDeep-Sort algorithmwas assisted by theKalmanfilter. In this
study, they considered three classes of images (flowers, unripe tomatoes, and red tomatoes) and achieved
precision, recall, andmean average precision of 74.1%, 57%, and 63%, respectively. Additionally, Ge et al
incorporated the Shufflenetv2module as a backbone network to reuse and incorporate image features, the bi-
directional feature pyramid network framework in theNeck section, and the YOLOv5-Deepsort framework for
tomato detection [22]. In addition, they analyzed 3,818 images of tomatoes from a real-time video, and their
Deepsortmodel achieved 98.4% recall and 97.58mAP. In contrast,Wang et al applied fourmodels, namely a
faster RCNN, an SSD, a YOLOv3, and a YOLO-Dense, to detect anomalies in tomatoeswhile taking occlusion,
shading, and other factors into consideration [23]. Based on 15,000 tomatoes, they found that YOLO-Dense had
amAPof 96.41%,while differentmethods of data augmentationwere taken into account. Based on theDarknet-
19 classificationmodel andYOLOv2 network, Zhao et al developed a detection algorithm to identify healthy and
diseased tomatoes from225 images [3]. By using different pre-processing image enhancement techniques, we
achieved accuracy, recall, andmAPof 96%, 97%, and 91%, respectively. In order to distinguish between the four
stages of tomato ripeness, Nugroho et al proposed threemodels: the faster region-based convolutional neural
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network (faster R-CNN), the SSD, and the YOLO [24].With an average accuracy of 99.955%and amAPof
90.8%, they got the highest accuracy using R-CNN from400 images collected fromKaggle.

In addition to YOLO-based detection, some researchers investigated other types of detection algorithms. A
series of preprocessing steps were performed byWan et al to separate the tomato from its background, including
threshold segmentation, noise cancellation, and image contour extraction [2]. Based on the color analysis
method developed for capturing feature hue values, the authors then used back propagation neural networks
(BPNNs) to classify tomatoes. The researchers collected 150 tomato imageswith three classes (unripe, orange,
and red), trained themodel with 102 images, and then tested it with 48 images, and achieved 99.31%accuracy.
Chen et al converted the images into grayscale images and then used theOtsu algorithm to remove the complex
background from the images [4]. In the following step, binary images were optimized usingmorphological
operations, and original contourswere extracted using theCanny operator. Finally, amodifiedHough
transformwas applied to the images in order to recognize the tomato and extract only its true contour.
Additionally, they collected 89 tomatoes using an industrial camera under illumination variation and occlusion
conditions and achieved 94.33%, 96.5%, and 97.97% IoU, precision, and recall, respectively. Liu et al developed
a tomatoDetmodel where the authors usedDeep Layer Aggregation-34 (DLA-34) as its foundation and added a
Convolutional Block AttentionModule (CBAM) to enhance the feature expression ability before utilizing a
radius head to detect tomatoes in the same natural conditions as Chen et al [25]. As a result of training their
models with 725 images and testing themwith 241 images, they got accuracy rates of 95.7%, recall rates of
94.3%, andAP rates of 98.16 percent. The greedy non-maximum suppressionmethod, the greedy non-
maximummergingmethod, and the greedy non-maximummergingmethod are used asmethods of post-
processing byTureková et al [26]. Then, a faster R-CNNmodel using a ResNet-50 backbonewas used to detect
tomatoes from50 images with precision, recall, andAP of 82.12%, 84.08, and 88.4%, respectively.

Existing studies havemostly focused on categorizing ripe and unripe tomatoes as ripe and unripe,
respectively. The binary approach ignores themulticlass classification problem,which involves identifying not
only tomatoes that are ripe and unripe but also theirflowers. The pivotal stage of partially ripe tomatoes has
often been overlooked. This stage is crucial for the agricultural industry, especially for long-distance shipments,
as partially ripe tomatoes continue to ripen during transport, reducing the risk of damage typically associated
with shipping fully ripe tomatoes, which are susceptible to bruising and spoilage. Amore accuratemeasurement
of tomato ripeness has direct implications for sustainability. It is critical to harvest tomatoes at the right stage of
ripeness tominimize waste due to spoilage during transport or storage. Consequently, waste is reduced,
resources are conserved, and energy is saved by not growing and transporting these discarded tomatoes.
Furthermore, precise harvesting can reduce the number of trips across fields, save fuel, and reduce unripehouse
gas emissions.

Our study aims tofill this gap in the literature by creating a classification system that identifies unripe
(unripe), partially ripe, and red (ripe) tomatoes. Various tomato images frommultiple sources were gathered to
ensure a balanced representation of ripeness stages. Every imagewas annotated and validated by subject-matter
experts to ensure accuracy and reliability. The computational complexity and processing time of detection
algorithms are noted challenges in existing studies. Because of this, embedded systems, such as the Raspberry Pi,
cannot be implemented using such algorithms.We have adopted the YOLOv8model, an advanced object
detection algorithm recognized for its excellent performance, efficiency, and reduced computation time. In
particular, ourmodel was implemented on the Raspberry Pi, which demonstrates its real-world utility.With the
YOLOv8model integratedwith Raspberry Pi, farmers have access to a tool that reduces theirmanual workload
andminimizes errors in tomato harvesting processes, ensuringmaximumyields andminimizingwaste.

To summarize, our systemprovides a detailed, efficient, and actionable solution for tomato classification
that overcomes previous research barriers. By combining the YOLOv8model with Raspberry Pi, our approach
has the potential to redefine agricultural practices, leading to greater productivity, decreasedwaste, and
improved crop quality, whichwill contribute to amore sustainable tomato harvesting pipeline.

2.Materials andmethods

In order to address the critical challenges associatedwith tomato ripeness detection and classification, we
propose a novel approach leveraging the cutting-edge object detection algorithmYOLOv8, as shown infigure 1.
Thismethod ismeticulously designedwith four primary phases that ensure optimal performance and
robustness:

1. Developing a comprehensive tomato image dataset from open-source datasets with a wide range of ripeness
levels, lighting conditions, and tomato varieties for training and validating YOLOv8models.
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2. Employing the YOLOv8 model to accurately detect and classify tomato ripeness stages with extraordinary
recall andmean average precision (mAP) of 0.5whileminimizing computational overhead and processing
latency. In real-world scenarios, this provides an efficient and effectivemethod for detecting tomato ripeness.

3. The state-of-the-art model can be seamlessly integrated into a Raspberry Pi-based embedded system to
enable the development of an automated tomato-picking system that dramatically reduces labor costs and
damage associatedwithmanual harvesting.

4. Demonstrate the accuracy, efficiency, and adaptability of the proposed framework in comparison with
existingmethods.

A framework like this could havewide-ranging implications for the agricultural sector, with immense
potential.We hope to revolutionize the tomato harvesting pipeline by streamlining and automating the tomato
ripeness detection process, resulting inmore sustainable and cost-effective production practices. In the
following section, wewill provide a detailed exposition of the proposed framework.Wewill elucidate the
methodology and techniques employed at each phase to achieve the framework’s objectives. As a result of our in-
depth exploration, the framework can be readily replicated and implemented in real-world applications,
enhancing tomato ripeness detection and classification.

2.1.Data preparation and annotation
Data preparation plays an important role in detection algorithms since the quality and accuracy of input data
directly influence themodel’s performance. A detection algorithm’s effectiveness depends on its ability to
understand complex patterns and distinctive characteristics that distinguish one class from another based on the
training data [27]. In the presence of noise, incompleteness, inconsistent noise or outliers, themodel willmost
likely produce erroneous or inconsequential patterns, leading to suboptimal generalizationwhen applied to
unknowndata. It is critical to prepare awell-prepared dataset to ensure that the tomato ripeness detectionmodel
is robust and accurate. In this study, two different data sources were used to boost the generalization ability of the
model. Thefirst data source included 387 tomato images collected from various online resources, encompassing
6,369 instances. A variety of tomato types, stages of ripeness, lighting conditions, and background contexts were
meticulously chosen for the images. Another sourcewas theKaggle dataset, which contained 359 images and
2,008 instances [28]. In theKaggle dataset, only images were providedwithout any accompanying annotations.

We established a rigorous annotation process for tomato ripeness labels in order to ensure their accuracy and
consistency. The images fromboth sources were first carefully annotated by an expert using ‘labelImg’ tool, who
classified the tomatoes into unripe (unripe), partially ripe, and ripe. It has also been clarified that each image is
pairedwith a corresponding .txtfile that captures the bounding box information for each tomato ripeness
category: unripe (unripe) labeled as ‘0’, partially ripe labeled as ‘1’, and red (ripe) labeled as ‘2’.We aim to provide

Figure 1.Proposed framework for tomato ripeness detection in a real-world environment.
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readers with a thorough explanation of image annotation, labeling, and subsequent training of YOLOmodels
through this elucidation. As a result of this initial annotation, a second expert reviewed and verified the labels,
effectively implementing a double-blind review process. As a result of this rigorous approach, the annotations
were reliable, and human errorwasminimized.

A double-blind validation systemwas incorporated to ensure the integrity of the annotations. The system
worked as follows:

• Blinding of the annotation: After the primary expert completed the annotation, the identity of this expert and
the specific annotations were concealed from a secondary expert reviewing the paper.

• Secondary Review: An expert who is unaware of the primary annotator’s decisions independently reviewed
the images andmade annotations.

• Comparison andValidation: Any discrepancies between the annotations of the two experts were discussed
and reconciled to ensure the utmost accuracy of the labels.

As a result of this procedure, we not only established an effective checks-and-balances systembut also
ensured that any biases or errors fromone expert could not affect the final dataset. By using a rigorous double-
blind approach, the annotations weremore reliable, reducing the possibility of human error.

After the annotationswerefinalized, theDataset was divided into three subsets so the YOLOv8model could
be trained, tested, and validated. Themodel learned underlying patterns and relationships between the input
features and ripeness categories by training 70%of the images. In addition, 20%of the imageswere reserved for
testing, enabling themodel to be evaluated on previously unexplored data. Finally, 10%of the images were
validated, allowing themodel’s hyperparameters to befine-tuned and generalization capabilities to be assessed.
Based on three ripeness categories, table 1 presents a comprehensive data distribution analysis across each
dataset source. Figure 2 shows some sample images fromboth samples.

2.2. Run-time preprocessing
CLAHE (Contrast LimitedAdaptiveHistogramEqualization):Given the variety of lighting conditions seen in
our collected images, standardizing brightness and improving contrast was critical. As a result, we usedCLAHE
to ensure localized contrast enhancement on smaller tiles or regions of the image.More specifically:

• Tile Size (orGrid Size):Typically, an 8×8 grid divides the image into 64 regions. During histogram
equalization, each of these regions is treated independently, whichmakes it particularly useful for imageswith
differing lighting conditions.

• Clip Limit:The clip limit was set to 2.0 by default. By setting this value, the amplification of the contrast is
restricted so the bin count is not greater than the clip limitmultiplied by the bin’s average. Due to this
limitation, overamplification of contrast and possible noise amplification are prevented.

TheCLAHEmethodwas implementedwith these parameters so that tomatoes with subtle color variances
or in shadowed regions could be accurately detected. Consequently, ourmodel was able to adapt to a variety of
lighting conditions.

• Gaussian Blur:By usingGaussian blur, noise was reduced and features were enhanced:

• Kernel Size:Typically, a 5×5 kernel is used. As the kernel size is crucial, a larger kernel would result in amore
pronounced blur, whichmight not be suitable for all images.

Table 1.Data splitting into training, testing, and validation set for both sources.

Data Sources Class Types Instances Training Testing Validation

Internet Unripe 2,426 1,402 668 356

Partially Ripe 1,313 782 342 189

Ripe 2,630 1,738 611 281

Total 6,369 3,922 1,621 826

Kaggle Unripe 380 286 55 39

Partially Ripe 236 165 38 33

Ripe 1,392 946 239 207

Total 2,008 1,397 332 279

5

Eng. Res. Express 7 (2025) 015219 MNahiduzzaman et al



• StandardDeviation (σ):Our algorithmwas given a standard deviation value of 0 for bothX andYdirections
which allowed us to calculate the optimal standard deviation based on the kernel size.

These parameters helped accentuate the color and boundaries of the tomatoes,making them easier to
identify during detection, and reducing the risk of false positives due to image noise..

2.3. YOLOv8
On January 11, 2023, Ultralytics introduced its latest state-of-the-art object detectionmodel, YOLOv8,
following the success of its earlier versions (YOLOv3 andYOLOv5) [29]. YOLOv8 includes several new features,
including enhanced detection of objects, segmentation of images, and classification. Additionally, it exhibits
significant improvements in accuracy, speed, andmodel complexity. Based on a revamped architecture and the
integration of loss functions like CIoU andDFL for bounding box detection, alongwith binary cross-entropy for
classification loss, YOLOv8 offers improved performance, especially for small objects [30]. By improving
architecture and leveraging cutting-edge training approaches, it outperforms its predecessors on theCOCO
dataset [31], achieving enhanced accuracy with fewer parameters [32].

A new convolution block is incorporated into the YOLOv8 backbone to replace conventional 6×6
convolutions withmore efficient 3×3 convolutions. As a general rule, smaller convolutions aremore efficient, as
they extractmore granular features, while reducing the number of parameters,making themodelmore efficient
and potentially faster. As a result of thismodification, there are fewer parameters, the architecture is simplified,
and themodelmay run faster without compromising its accuracy. Amajor improvement of YOLOv8 is the
elimination of anchor boxes. In earlier YOLOversions, it was necessary to carefully select anchor boxes based on
their size and ratio,making the optimization process difficult. Themodel predicts object locations based on their
centers, circumventing the need for predefined anchor boxes.

Themodel would predictmultiple bounding boxes for each anchor per grid cell if anchor boxeswere used.
TheNon-MaximumSuppression (NMS) process would then be complicated by the large number of overlapped
boxes for a single object. As a result, the anchor-free approach speeds up the inference process and simplifies the
post-processing of theNMS results. The primary building block of the YOLO architecture previously used only
the output from the final bottleneck layer. However, the C2F block now concatenates output from all bottleneck

Figure 2. Some images from (A) Internet and (B)Kaggle dataset.
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layers. This allows the network to access and utilize information frommultiple stages, resulting in a richer,more
comprehensive flowof data. Figure 3 illustrates the YOLOv8 architecture with appropriate labeling [33].

This study used the YOLOv8s (small)model for tomato ripeness detection. Thefigure shows that the
YOLOv8 architecture consists of threemain components: Backbone, Neck, andHead, designed for efficient and
precise object detection. The Backbone extracts key features from input images through a series of Conv 3×3
layers andC2fmodules, enhanced by Bottleneck layers for efficient feature aggregation and an SPPF (Spatial
Pyramid Pooling Fast) layer to improve feature resolution. TheNeck refines these features and fuses information
fromdifferent scales using upsampling, concatenation, Conv 3×3 layers, and additional C2fmodules, enabling
robustmulti-scale feature representation. Finally, theHead performs detection atmultiple scales, utilizing
specialized layers to predict bounding boxes and object classes with high accuracy. This architecture is well-
suited for tasks like tomato ripeness detection, leveraging its efficientmulti-scale feature processing and precise
detection capabilities.

We assessed the YOLOv8smodels with a high-quality, pre-processed tomato dataset in order to ensure that
therewere enough training samples for each class. Themodels were trained for 100 iterations, using stochastic
gradient descent (SGD) as the optimizer and a callbackwith a patience of 20 as the callbackmethod.Depending
on the level of ripeness of the tomato, theremay be specific differences in color and texture. The
hyperparameters of ourmodel have beenfine-tuned aftermeticulous tuning to better capture these nuances.
The learning ratewas set to 0.01 and the batch size to 8. Asmentioned in the previous section, ourmodel
performance has been enhanced by several run-time preprocessing techniques. Several keymetrics were used to
evaluate themodels’ performance, including precision, recall,mean average precision at 50% intersection over
union (mAP@50), and computational resources (e.g., training time,memory usage, and inference speed).

Figure 3.YOLOv8 architecture for accurate tomato ripeness detectionwith appropriate labels.
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Several experiments were conducted to analyze the impact ofmodel size and complexity on overall
performance, taking into account factors such as false positives, false negatives, and computational resources.
Based on this thorough evaluation, we identified the optimal YOLOv8smodel for effectively detecting tomato
ripeness and classifying it with appropriate labels while balancing accuracy and computational efficiency. A
comprehensive analysis of this study is important for the development of reliable tomato detection systems and
can contribute to the advancement of agricultural robots for picking tomatoes.

2.3.1. Experimental setup
The experimental setupwas implemented onGoogle Colab, leveraging the computational power of anNVIDIA
Tesla T4GPUwith 15GBofmemory, supported by a dual-core Intel XeonCPUoperating at 2.00GHz and 26
GBof RAM. The software environment consisted of Python 3.9.16 and PyTorch 1.13, ensuring compatibility
with the chosenmachine learning framework and libraries. Allmodels were trained using the following
hyperparameters and settings:

• Epochs: 100 (maximumnumber of epochs for training).

• Early Stopping Patience: 20 epochs (to terminate training if no improvement is observed).

• Batch Size: 8 images per batch (with -1 available for auto-batch adjustment if required).

• Image Size: 640 pixels (uniform input size as an integer or specified aswidth and height).

• Data LoadingWorkers: 8 threads (for efficient data loading).

• Optimizer: Stochastic Gradient Descent (SGD)

• Mosaic Augmentation:Disabled in thefinal 10 epochs.

• CloseMosaic: 10 (number of final epochswithmosaic augmentation disabled).

2.4.Hardware deployment
Using Raspberry Pi as a deployment target, we deployed ourmodel. Raspberry Pi is a small, affordable, single-
board computer developed by the Raspberry Pi Foundation. This platform is popular due to its ability to run
ML/DL algorithmswithout requiring a dedicated computer or internet connection, enabling edge computing.
Due to its size limitations and the lack of internet access, Raspberry Pi is a great deployment target. A number of
recent works [34–36] have exploited this for edge deployment ofML/DL algorithms. The Raspberry Pimodel 4
is the latest version of the Raspberry Pi, and has been selected for this particular project. The Raspberry Pi v4
comeswith a 64-bit ARMCortex-A72 processor, 1/2/4/8GBof LPDDR4RAM (the 4GBmodel was used in this
study),WiFi, Bluetooth,HDMI, and aCSI Camera port. The board is very portable since it is powered by a
single-cell Li-Ion battery and has a small footprint of 2.5’ x 2.2’ x 0.47’.

A heavymodel like YOLO (YouOnly LookOnce) on a Raspberry Pi presents several significant challenges
due to the Raspberry Pi’s limited computational power compared toGPUs or high-endCPUs. Raspberry Pi
devices, even themore capable Raspberry Pi 4, have limited computational power compared tomodern desktop
and servermachines. YOLOv4, as a deep neural networkwith a large number of parameters, requires substantial
computational resources. In the case of high-resolution images or videos, running such amodel on aRaspberry
Pi can be slow and fails to achieve real-time performance. Additionally, YOLOmodels typically have a large
memory footprint, whereas Raspberry Pi devices typically have a limited amount of RAM.The loading of large
models and processing of images or videos can lead tomemory exhaustion, whichmay cause the application to
crash or slow down significantly. Finally, achieving real-time performance (e.g., 30 frames per second for video
processing) can be challenging, especially for high-resolution inputs. There are also several limitations,
including limited library support, high power consumption, and no dedicatedGPU.All these obstacles had to be
overcome in order to deploy ourmodel to the Raspberry Pi. First, the lower performance of the YOLOv8model
wasmitigated by using the YOLOv8smodel, which has significantly fewer computing resources and is optimized
for low-powered devices. The limited RAM issuewas resolved by using a comparatively high-end Raspberry Pi
with 4GB of RAM,whichwas sufficient for ourmodel.

Without access to a dedicatedGPU, achieving real-time performance posed a challenge. To address this, we
optimized our software pipeline usingmultithreading, which distributed tasks acrossmultiple threads and
improved processing speed.With these optimizations, we achieved an inference time of less than 500ms,
corresponding to 2 FPS. This frame rate was intentionally chosen to balance energy efficiency and thermal
management, ensuring optimal performance on low-power devices like the Raspberry Pi. Running intensive
models like YOLOv8 over extended periods can generate significant heat, leading to thermal throttling. To
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prevent this, we implemented a robust cooling solution using a high-quality aluminumheatsink and a cooling
fan,maintaining CPU temperatures below 65°Cduring inference and ensuring stable and efficient operation.

Figure 4 illustrates the hardware setup for the proposedmodel on the Raspberry Pi 4with a cameramodule.
The process of deploying a YOLOv8model on aRaspberry Pi 4with a Raspberry Pi CameraModule involves
several steps, including setting up the Raspberry Pi, installing the necessary software and libraries, and
configuring the cameramodule. First, the RaspbianOSwas installed on the device, which is the official operating
system.Next, Python andOpenCV software dependencies were installed. A headless version of theOpenCV
librarywas installed, which ismore suitable for low-end devices without all of its functionalities. Our next step
was to configure the Raspberry Pi interfacing options to enable the cameramodule for Raspberry Pi. Then, we
installed the Pytorch library, which is needed to run the YOLOv8model. Therewas no pre-built binary for the
ARMCPU, so the library had to be compiled from source code. Finally, we transferred the pre-trained YOLOv8s
weights to the Raspberry Pi storage, whichwill be loaded during inference. During inference, the imageswere
captured directly from the Raspberry Pi cameramodule at a resolution of 960× 640 pixels. Nevertheless, the
imageswere cropped to 640 by 640 before feeding them to themodel. During the inference process, these images
were fed to themodel, and no additional pre-processing stepswere required.

It is crucial to balance accuracy and speedwhen deploying on aRaspberry Pi, as there are trade-offs to
consider. Due to Raspberry Pi’s lower performance, we had to deploy the smaller YOLOv8smodel, which has
slightly lower performance than the largemodel. In addition to hardware acceleration, input image resolution,
preprocessing steps, and thermal conditions, several other factors affect real-time performance. As discussed
earlier, we utilizedminimal pre-processing steps,multithreading, and thermal cooling to reduce the inference
time. Additionally, the frameratewas kept low, close to 2FPS, to ensure themodel ran smoothly. However, the
Raspberry Pi can still be an effective platform for detecting and classifying tomato ripeness on-device, if these
challenges are taken into account and appropriate optimization strategies are employed. According tofigure 5,
Raspberry Pi 4 inference times are compared to those of a laptop computerwith an Intel Core i5 processor.
Raspberry Pi 4 CPUs have four cores and a clock at 1.8GHz, while laptopCPUs have eight cores and a clock at
4.2GHz. Raspberry Pi inference time increases by 4–5 times.However, wewere able to achieve near real-time
detectionwith the YOLOv8smodel running in Raspberry Piwith an inference time of 665.04ms.

3. Assessmentmetrics and implementation

Avariety ofmetrics, such as theMeanAverage Precision (mAP), Precision, Recall, and F1-Score, were used to
evaluate the performance of the YOLOv8models. According to equations (1) and (2), recallmeasures the
number of real positives detected, whereas precision evaluates the ratio of accurately identified positives to all
predicted positives [37, 38]. In equation (3), the F1-Score is defined as the harmonicmean of precision and
recall.
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Figure 4.Hardware Setup.
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Average Precision (AP) is defined as the area under the Precision–Recall curve, whilemAP is defined as the
mean of AP across all classes. Awidely usedmetric, thesemetrics are defined in equations (5) and (6) [39].
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Where true positives, true negatives, false positives, and false negatives were represented byTP,TN , FP and FN ,
respectively. n is the number of classes, APi is the average precision for class i and p(r) signifies the precision at
recall r . It is imperative to define true positives before calculating thesemetrics. The Intersection overUnion
(IoU)metric is employed to achieve this. Essentially, it is the ratio between the intersection and union of the
prediction bounding box and the ground truth bounding box. As a result of the formula below, IoU is calculated:
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Where, A andB are ground truth and prediction bounding boxes. A higher IoU value indicates a closermatch
between the prediction and ground truth bounding boxes [40]. Predictions are considered true positive if the
IoU score equals or exceeds 0.5, as is the standard practice in object detection [41–43]. A predictionwith an IoU
score below 0.5 is classified as a false positive. An image is labeled false negative if none of the predictionsmatch
the bounding box of the ground truth.Only the predictionwith the highest confidence score is considered a true
positive ifmultiple predictions exceed the IoU threshold for the same ground truth. All other predictions are
considered false positives. AmAP calculated using a threshold of 0.5 is referred to as amAP@50. Additionally,
the YOLOv8smodel’s classification efficacywas evaluated using a confusionmatrix (CM).

4.Numerical results and discussion

A comprehensive examination and discussion of the outcomes of two datasets are presented in this section. Our
primary objective is to combine these datasets seamlessly for the training of the cutting-edge YOLOv8smodel,
and then analyze the results from each dataset and the combined dataset comprehensively. Our approach
ensures robustness and generalizability by allocating 75%of total images from each dataset for training, 15% for
testing, and 10% for validation.

4.1. The kaggle dataset
This section presents a comprehensive analysis of the performance of YOLOv8s, whichwas trained on 1,397
instance distributions evenly distributed across the unripe (286), partially ripe (165), and ripe (946) categories.
During validation, 279 specimenswere used, including 39 unripe, 33 partly ripe, and 207 ripe specimens.We

Figure 5.Comparison of inference times between a Raspberry Pi 4 and a laptop computer with Intel Core i5 CPU.
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tested themodel on 71 images containing 332 instances (unripe: 55, partially ripe: 38, and ripe: 239). Figure 6
shows a class-specific performance evaluation of theKaggle dataset was conducted using the confusionmatrix.
Based on table 2, F1 scores for unripe, partially ripe, and ripe fruits are 0.80, 0.65, and 0.796, respectively. It can
be attributed to the inherent difficulty of distinguishing between unripe and partially ripe samples, which leads
to classification confusionwithin themodel, that the partially ripe class exhibits a lower F1-score.

Based onfigure 7, YOLOv8s delivers amean average precision (mAP) at 50 of 0.896, which is commendable.
Figure 8 illustrates the F1-Confidence Curve for the tomato ripeness detection task using the YOLOv8smodel.
The plot shows the variation of F1-scorewith respect to different confidence thresholds for each ripeness class:
Unripe (blue curve), Partially Ripe (orange curve), andRipe (green curve). The thick blue curve represents the
aggregated F1-score across all classes. At lower confidence thresholds, the F1-score is higher due to the inclusion
ofmore predictions, increasing recall. As the confidence threshold increases, the F1-score gradually declines,
reflecting the trade-off between precision and recall. For the aggregated performance across all classes, the
maximumF1-score of 0.84 is achieved at a confidence threshold of 0.354, as indicated by the thick blue curve. In
figure 9, we illustrate the decreasing and optimizing trends for val/box_loss and val/cls_loss after training for 50
epochs.

Results presented in this section not only demonstrate the impressive performance of the YOLOv8smodel
but also provide insights into the underlying factors that contribute to its success. In addition, this study
indicates the potential for widespread application of themodel in high-impact applications like automatic
tomato picking. The importance of determining tomato ripeness is further highlighted.

4.2. Internet-sourced dataset
This section evaluates the performance of the YOLOv8smodel, whichwas trained using a dataset compiled from
the internet consisting of 3,922 instances, categorized as unripe (1,402), partially ripe (782), and ripe (1,738). To
ensure robust validation, we used 826 samples, including 356 unripe, 189 partially ripe, and 281 ripe samples.
We assessed themodel’s effectiveness using 79 images with 1,621 instances (unripe: 668, partially ripe: 342, and
ripe: 611).

Figure 6.Confusionmatrices for theKaggle dataset for the YOLOv8smodel (0: unripe, 1: partially ripe, 2: ripe, and 3: background).

Table 2.Yolov8s prediction onKaggle dataset performance breakdown.

Class Instances Precision Recall F1-score mAP@50

All 332 0.735 0.769 0.752 0.808

Unripe 55 0.80 0.80 0.80 0.853

Partially Ripe 38 0.682 0.62 0.650 0.74

Ripe 239 0.722 0.887 0.796 0.898
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According to table 3, the average precision, recall, and F1-scores are 0.747, 0.652, and 0.72, respectively,
indicating a satisfactory performance. The confusionmatrix of the Yolo v8xmodel is shown infigure 10.
Figure 11 shows the YOLOv8smodel’smAP at 50, which is 0.725, which highlights its commendable
performance. As shown infigure 12, the F1-confidence curve provides further insight into themodel’s
classification capabilities.

Infigure 13, we highlight the decreasing trends and optimization of val/box_loss and val/cls_loss after 50
epochs. The comprehensive analysis of YOLOv8s’ performance on the Internet-sourcedDataset not only
demonstrates themodel’s effectiveness, but also allows us to better understand the underlying factors that
contribute to its success.

4.3. Combined dataset
YOLOv8s’s performancewas evaluated using a combined dataset, combining internet-sourced andKaggle-
sourced data. Themodel’s performance improved noticeably after this integration, as shown in table 4, with
mAP@50 increasing from0.725 to 0.745.Moreover, the combined dataset demonstrated 0.751, 0.689, and 0.719
F1-scores, respectively, indicating an increase in precision, recall, and F1-score. Figure 14 shows the confusion
matrics of the Yolov8smodel for the combined dataset.

Figure 7.The precision–recall curve forKaggle dataset for YOLOv8smodel.

Figure 8.The F1-confidence curve for Kaggle dataset for YOLOv8smodel.
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Despite this, an in-depth examination of the F1-scores indicates that unripe and partially ripe tomatoes have
lower F1-scores of 0.698 and 0.658, respectively, in comparisonwith ripe tomatoes’ F1-score of 0.801. There is a
discrepancy between unripe and partially ripe tomatoes due to their visual similarity,making it difficult for the
detectionmodel to distinguish between them.Consequently, themodel’s performance is diminished. A number
of studies have classified tomatoes into ripe and unripe categories rather than separating them into unripe and

Figure 9.Different performance results Kaggle dataset for YOLOv8smodel.

Figure 10.Confusionmatrices for Internet-sourcedDataset for YOLOv8smodel (0: unripe, 1: partially ripe, 2: ripe, and 3:
background).

Table 3.Yolov8s prediction on Internet-sourced dataset performance breakdown.

Class Instances Precision Recall F1-score mAP@50

All 1,621 0.747 0.652 0.72 0.725

Unripe 668 0.739 0.637 0.684 0.717

Partially Ripe 342 0.647 0.638 0.643 0.664

Ripe 611 0.853 0.687 0.758 0.794
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partially ripe categories. Nevertheless, it is important to distinguish between unripe and partially ripe fruit. The
precision–recall curve and F1 confidence curve of the Yolov8smodel for combined dataset is shown infigures 15
and 16, respectively. Figure 17 illustrates the differences in performancemetrics between the various
classifications, providing a comprehensive understanding of the YOLOv8smodel’s efficacy on the combined
dataset. Figure 18 shows some images from the validation set.

4.3.1. Comparison with other state-of-the-artmodels
To evaluate the performance of our approach, we compared it against several state-of-the-art object detection
models, including YOLOv8s, YOLOv5s, YOLOv5l [44], RTDETR-l, RTDETR-x [45], and YOLOv9c[46]. The
comparisonwas conducted based on themAP@50metric, as shown in table 5, across three ripeness classes:
Unripe, Partially Ripe, andRipe, alongwith the overall performance (All).

Table 6 highlights themAP@50 values for eachmodel. Among themodels, YOLOv8s achieved the highest
overallmAP@50 score of 0.745, demonstrating its robust detection performance across all ripeness categories. It
also showed the best performance for the Ripe categorywith anmAP@50 of 0.845.However, for theUnripe
category, YOLOv9c performed slightly better, achieving anmAP@50 of 0.725, indicating its strength in
detecting lessmature tomatoes. YOLOv5l also exhibited strong performance, achieving an overallmAP@50 of
0.739, closely trailing YOLOv8s. Additionally, YOLOv5s delivered competitive results with an overallmAP@50

Figure 11.The precision–recall curve for Internet-sourcedDataset for YOLOv8smodel.

Figure 12.The F1-confidence curve for Internet-sourcedDataset for YOLOv8smodel.
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of 0.725,making it a viable lightweight alternative. RTDETRmodels (RTDETR-l andRTDETR-x) demonstrated
moderate performance in comparison, with RTDETR-l outperforming RTDETR-x in all categories except for
the Partially Ripe category. RTDETR-l achieved the bestmAP@50 score forUnripe but lagged behind the YOLO
models on other categories. Fromfigure 19 andfigure 20, it can be observed that the prediction fromYOLOv8s

Table 4.Yolov8s prediction on combined dataset performance breakdown.

Class Instances Precision Recall F1-score mAP@50

All 1,953 0.751 0.689 0.719 0.745

Unripe 723 0.716 0.678 0.696 0.717

Partially Ripe 380 0.716 0.608 0.658 0.672

Ripe 850 0.820 0.783 0.801 0.845

Figure 13.Different performance results Internet-sourcedDataset for YOLOv8smodel.

Figure 14.Confusionmatrices for combinedDataset for YOLOv8smodel (0: unripe, 1: partially ripe, 2: ripe, and 3: background).
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Figure 15.The precision–recall curve for combinedDataset for YOLOv8smodel.

Figure 16.The F1-confidence curve for combinedDataset for YOLOv8smodel.

Figure 17.Different performance results combinedDataset for YOLOv8smodel.
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are cleaner and closely alignwith the ground truthwhile othermodels frequently overpredict both in dense and
less dense scenes. In conclusion, YOLOv8s consistently outperformed other state-of-the-artmodels in overall
performance,making it themost effectivemodel for tomato ripeness detection.

Figure 18. Sample images of (A)Actual (B)Predicted for the combinedDataset.
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4.4. Prototype deployment andperformance
We tested a proof-of-concept deployment of our tomato detection systemusing the YOLOv8smodel
implemented on aRaspberry Pi. The setup involved the Raspberry Pi processing video footage of tomatoes
played on aTV screen. Despite the constrained computational resources of the Raspberry Pi, the system
performed reasonably well, achieving near real-time detection. The device successfully identified tomatoes in
the video streamwith consistent accuracy, demonstrating the feasibility of deploying lightweightmodels in
resource-constrained environments. Figure 21 illustrates the deployment setup and detection results. A video
demonstration of the system is provided at the following link: https://youtu.be/CDy3DOMHUv4.

5. Performance comparisonwith existing literature

This section compares the performance of our YOLOv8smodel with a variety of state-of-the-art (SOTA)
models. The study is notable for addressing the detection of three distinct tomato ripeness classes: unripe,
partially ripe, and ripe. Consequently, the detection results differ significantly fromprevious studies.Many
previous studies have focused on binary classification (ripe and unripe tomatoes), with Lawal’s study achieving
the highestmAP@50 of 99.5%. Although the difference between ripe and unripe tomatoesmay seem simple,
theirmodel comprises 53 layers with 63million parameters, taking 52milliseconds to detect a single tomato
[20]. Contrary to this, ourmodel contains only 11.11million parameters (nearly 5 times fewer) and takes only
17.6milliseconds to detect. In our study, we aim to develop a simple, lightweightmodel that can be seamlessly
integrated into embedded systems. Implementing ourmodel on aRaspberry Pi shows its potential for real-
world deployment in tomato-picking robots and other agricultural applications.Moreover, some researchers
have explored three-class detection (flower, ripe, and unripe), but none have considered partially ripe tomatoes.
In this category, Egi et al [21] achieved the bestmAP@50 at 63%.However, theirmodel has 88million
parameters.With only 11.11million parameters (approximately 8 times fewer), our YOLOv8smodel performs
nearly as well as theirs with amAP@50 of 80.8% (17%higher) on theKaggle dataset and 74.5% (11%higher) on

Figure 19.Comparison ofmodel performance on less dense scenes (Green: Unripe; Orange: Partially Ripe; Red: Ripe).

Table 5.Comparisonwith othermodels onCombinedDataset.

Model Unripe Partially Ripe Ripe All

YOLOv8s 0.717 0.672 0.845 0.745

YOLOv5s 0.695 0.668 0.811 0.725

YOLOv5l 0.716 0.657 0.843 0.739

RTDETR-l 0.739 0.621 0.820 0.727

RTDETR-x 0.691 0.607 0.823 0.707

YOLOv9c 0.725 0.656 0.839 0.740
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Table 6.Performance comparisonwith SOTAmodels.

Authors

Dataset Count Instance and

Images Class type Model Layers Parameters Testing Time Precision (in%)
Recall

(in%) mAP@50

Zhao et al [3] 225 Images 2-class (Healthy andDiseased

tomatoes)
YOLOv2 29 50M — 96.00 97.00 91.00

Magalhães et al [19] 297 Images 2-class (Unripe and reddish
tomatoes)

SSDMobileNetv2 — — 16.44ms 84.37 54.40 51.46

Lawal [20] 425 Images 2-class (ripe and unripe) YOLOv3 53 63M 52ms 97.00 99.30 99.50

Zheng et al [1] 1,698 Tomato Instances 2-class (mature and immature) R-CSPDarknet53&CSPP — — — 87.60

Egi et al [21] 1,097 Images and 6,957

Tomato Instances

3-class (flower, unripe tomato,

and red tomato)
YOLOv5 25 88M — 74.10 57.00 63.00

OurDataset (Proposed) 387 Images and 6,368

Tomato Instances

3-class (Ripe, partial and unripe)
Custom

YOLOv8s 224 11.11M 17.6ms 74.70 65.20 72.50

Kaggle datasetwith ourPro-

posedmodel

359 Images and 2,008

Tomato Instances

3-class (Ripe, partial and unripe)
Kaggle

YOLOv8s 224 11.11M 17.6ms 73.50 76.90 80.80

CombinedDataset (Proposed) 746 Images and 8,376

Tomato Instances

3-class (Ripe, partial and unripe)
Combined

YOLOv8s 224 11.11M 17.6ms 75.10 68.90 74.50
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the combined dataset. In addition to demonstrating the robustness of ourmodel, these results also demonstrate
that it is suitable for real-world applications, reinforcing its position as a leading solution for detecting tomato
ripeness.

In summary, our YOLOv8smodel outperforms existing SOTAmodels in detecting tomato ripeness across
three classes, whilemaintaining a lean, efficient architecture.With its simplicity and lightweight nature, our
model is an ideal candidate for deployment on embedded systems, allowing new agricultural applications to be
created and setting a new standard.

6. Conclusion

This study presents a groundbreaking approach for detecting tomato ripeness using the YOLOv8 object
detection algorithm.Compared to existing state-of-the-artmodels, ourmodel ismore accurate and efficient,
making it a pioneering solution. The YOLOv8model was trained on a comprehensive tomato image dataset and
was able to detect three distinct ripeness classes: unripe, partially ripe, and ripe. The results obtained from the
Kaggle dataset demonstrated amean average precision (mAP) at 50 of 0.808, alongwith F1-scores of 0.80

Figure 21.Performance of hardware prototype.

Figure 20.Comparison ofModel performance on dense scenes (Green: Unripe; Orange: Partially Ripe; Red: Ripe).
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(unripe), 0.65 (partially ripe), and 0.796 (ripe). Using the Internet-sourcedDataset, themodel achieved a
mAP@50 of 0.725, with F1-scores of 0.747 (unripe), 0.652 (partially ripe), and 0.72 (ripe).We are confident that
ourmodel is effective and robust based on these results.Additionally, we seamlessly integrated the YOLOv8
model into a Raspberry Pi-based embedded system, paving theway for automated tomato picking. By
integrating these systems, we can reduce the need formanual labor, reduce labor costs, andminimize crop
damage during harvest. In real-world applications, ourmodel’s lightweight and efficient architecturemakes it
practical to deploy. As a result of our study, a newbenchmark in tomato ripeness detection has been established,
enabling advancements in cropmanagement and automated harvesting systems. Themodel’s exceptional
accuracy and efficiency, demonstrated through rigorous evaluation and validation, reinforce its superiority over
existingmethods. As part of future work, we plan to incorporate different tomato varieties and environmental
conditions into theDataset to enhance themodel’s adaptability. Additionally, further research can explore the
integration of advanced computer vision techniques and conductfield trials to validate themodel’s performance
on a variety of farms. Beyond tomato harvesting, our approach has implications for other fruit and vegetable
classification tasks, contributing to the advancement of smart farming and precision agriculture.
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