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 
Abstract: A collection   = {H1,H2,..., Hr } of induced sub 

graphs of a graph G is said to be sg-independent if (i) 
V(Hi) V(Hj )=  , i   j, 1≤ i,  j≤ r and (ii) no edge of G has its 

one end in Hi and the other end in Hj , i  j, 1≤ i, j≤ r. If Hi   H, 
∀ i, 1≤ i ≤r, then   is referred to as a H-independent set of G. Let 
  be a perfect or almost perfect H-packing of a graph G. Finding 
a partition                    of   such that    is H-
independent set, ∀ i,  
1 ≤ i ≤ k, with minimum k is called the induced H-packing k-
partition problem of G. The induced H-packing k-partition 
number denoted by ipp(G,H) is defined as ipp(G,H) = min      
(G,H) where the minimum is taken over all H-packing of G. In 
this paper we obtain the induced H-packing k-partition number 
for Enhanced hypercube, Augmented Cubes and Crossed Cube 
networks where H is isomorphic to    and     . 

Keywords: Augmented Cubes, Crossed Cube Networks, 
Enhanced hypercube, Induced H-packing k-partition. 

I. INTRODUCTION 

For any graph G, let V(G) denote the set of vertices in G 
and E(G) denote the set of edges in G, |V(G)| and |E(G)| 
denote the respective cardinalities of these sets. An H-
packing of a graph G = (V, E) is a set of vertex disjoint sub 
graphs of G, each of which is isomorphic to a fixed graph H. 
A perfect H-packing in a graph G is a set of H-subgraphs of 
G such that every vertex in G is incident with one H-
subgraph in this set. An almost perfect H-packing in a graph 
G is a set of H-subgraphs of G such that at most |V(H)| − 1 
number of vertices are not incident on any H - subgraph in 
G [13], [14]. We define this concept as follows: A collection 
  = {H1, H2 , ... , Hr} of induced sub graphs of a graph G is 
said to be sg-independent if (i) V(Hi) V(Hj ) =  , i   j, 1≤ i,  
j≤ r and (ii) no edge of G has its one end in Hi and the other 
end in Hj, i  j, 1≤ i,  j≤ r. If Hi H, ∀ i, 1≤ i ≤ r, then   is 
referred to as a H-independent set of G. Let   be a perfect 
or almost perfect H-packing of a graph G. Finding a 
partition                      of   such that    is H-
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independent set, ∀i, 1≤ i ≤ k, with minimum k is called the 
induced H-packing k-partition problem of G.  The minimum 
induced H-packing k-partition number is denoted by 
ippH(G,H). The induced H- packing k-partition number 
denoted by ipp(G, H) is defined as ipp(G, H) = min     (G, 
H) where the minimum is taken over all H-packing of G. 
Packing is an extension of matching. An Induced matching 
and induced matching partitions of certain interconnection 
networks was studied [2], [11]. The induced H-packing k- 
partition problem was studied for certain interconnection 
networks such as hypercubes, Sierpiński graphs [12]. An 
approximation algorithm for maximum   -packing in 
subcubic graphs was studied by Kosowski et al [10]. Xavier 
et al [12] proved that the induced   -packing k-partition 
problem is NP- complete, also induced   -packing k-
partition problem is NP-complete. In this paper we obtain 
the induced H-packing k-partition number for Enhanced 
hypercube, Augmented Cubes and Crossed Cube networks 
where H is isomorphic to    and     . 

II. ENHANCED HYPERCUBE NETWORKS 

A Hypercube with extra connections called skips is referred 
to as an enhanced hypercube. As a variant of the   , 
enhanced hypercubes      (n ≥2, (1≤k ≤ n−1) are proposed 
to improve the efficiency of the hypercube architecture and 
have found substantial applications. Inherited from   ,      
is also a regular graph [15], [20]. But the enhanced 
hypercubes are much more attractive than normal 
hypercubes due to its potential nice topological properties. 
The enhanced hypercube      (1≤k≤n−1), is a graph with 
vertex set V(    ) = V(  ) and edge set E(    ) = E(  )∪ 
(x0x1x2, ..., xk−2, xk−1, xk ... xn−1, x0x1x2...xk−2, xk−1, xk ...xn−1). 
The edges of     in       are hypercube edges and the 
remaining edges of      are called complementary edges 
[4], [7], [8], [9], [16], [17], [18], [20], [21].When k=0,      
reduces to the n-dimensional hypercube. The enhanced 
hypercubes      (1≤ k ≤ n−1) proposed by Tzeng and Wei 
[15] are (n +1) regular. They have 2n vertices and (n +1)2n−1 

edges. 
Theorem 1.1. Let G be the Enhanced hypercube 
network       n ≥2, Then G has an almost perfect 
  -packing. 
Proof. We prove the result by induction on the dimension n 
of the Enhanced hypercube network     . We begin with n = 
2,    = {(00, 10, 11)} is an almost perfect   -packing 
leaving out one vertex unsaturated. In            0  ∪

    is an almost perfect   -packing leaving out two 
unsaturated vertices inducing an edge, where i  denotes the  
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set of paths in    prefixed by i, i = 0, 1. See Fig. 1(a). 
Assume the result to be true for      . Consider       . 
Suppose n + 1,2 is even. By induction hypothesis     = 
0  ∪1   is an almost perfect   -packing leaving out two 
unsaturated vertices in each copy of       in        . By 
construction the four left out vertices induce a cycle C. Let 
P be a sub path of length 2 in C. Then     =0  ∪1  ∪
   is an almost perfect   -packing leaving out one vertex 
unsaturated. Suppose n +1,2 is odd. Since n is even, each 
copy of        in           contains an almost perfect   -
packing leaving out one vertex unsaturated. The union is an 
almost perfect   -packing leaving out two unsaturated 
vertices in         . 
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Fig. 1. (a) An induced P3-packing 2-partition number 

of Q3, 2 (b) An induced P3-packing 3 - partition 
number of Q4, 2. 

Lemma 1.2. ipp(      ,    ) = 2. 
Proof.  Let P: p1p2p3 be a path of length 2 in       . Then 
|∪   

  N (pi)| = 5.  Hence consider another path Q of length 

2 such that V(P)∩V (Q) =   contains at least two vertices 

from ∪   
  N(pi). This implies that ipp(    ,    ) ≥2. Now 

let P ={(010, 000, 001)} and Q={(110, 100, 101)}. P∪Q is 
an optimal induced   -packing 2-partition leaving out two 
vertices unsaturated in       .  
Lemma 1.3. ipp(    ,    )   3. 
Proof.        is packed with 5 vertex disjoint paths of length 
2, leaving out one vertex unsaturated. Suppose 
ipp(    ,   ) = 2. Let [V1] and [V2] be the induced P3-
packing 2-partition sets. There are two possibilities. (i) 
|[V1]|=4, |[V2]|=1 and (ii) |[V1]| = 3, |[V2]| =2. We claim that 
|[V1]|≥ 3 is not possible. Suppose |[V1]|= 3. Let P : uvw be in 
[V1]. Then |N (u)∪N (v)∪ N (w)|=8. Now V (P) and its 
neighboring vertices constitute 11 vertices leaving 5 vertices 
unsaturated. If Q and R are the other two paths of length 2 in 
[V1], then N(V(P))=N(V(Q))=N(V(R)), a contradiction.  If 
|[V1]|=3 is not possible, |[V1]|>3 is also not possible. This 
implies that ipp(    ,   )   3.  Now let P = {(0010, 0000, 
0001), (1110, 1100, 1101)}, Q = {(0110, 0100, 0101), 
(1010, 1000, 1001)} and R = {(1011, 0011, 0111)}. P∪Q∪R 
is an optimal induced   -packing 3-partition leaving out one 
vertex unsaturated in      . 
Lemma 1.4. ipp(    ,   ) ≥ 3. 
Proof.      contains four copies of     , say (    )i , 1≤i≤4.  
By Lemma 1.3, ipp(    ,   )≥3. Let [V1

i], [V2
i], [V3

i] be the 
induced   -packing 3-partition sets of (    )i, 1≤i≤4.  One 
vertex ui, 1≤i≤5 in each (Q4,2)i, 1≤i≤4 is not included in any 
of [V1

i], [V2
i], [V3

i], 1≤i≤4. For optimal induced   -packing 
3-partition, it is necessary that the sub graph induced by u1, 
u2, u3 and u4 contains a path of length 2 in Q6,2. Consider u1 
in (Q4,2)1 with deg(Q4,2)1(u1)= 5. If u1 is adjacent to vertices 

in [V1
1], [V2

1] and [V3
1] then the   -path containing u1 

cannot be included in any of [V1
1], [V2

1] or [V3
1] a 

contradiction. Suppose two vertices adjacent to u1 are in 
[V1

1], one vertex adjacent to u1 is in [V2
1] and two vertices 

adjacent to u1 are in [V3
1] then a 3-cycle is induced by these 

vertices, a contradiction. See Fig. 2(a). For the same reason, 
u1 cannot be adjacent to 5 vertices in [Vi

1] With |[Vi
1] | = 1, 

1≤i≤3. Hence u1 is adjacent to 5 vertices in any two of [Vi
1] 

with |[Vi
1] | = 2, 1≤i≤3. See Fig. 2(b). This argument is also 

true for ui in (Q4,2)i,2≤i≤4.  

Claim that the binding edges in ((Q4,2)1∪ (Q4,2)2)\(Q4,2)1 

incident at vertices of [Vi
1], 1≤i≤3, have their other ends in 

exactly one [Vj
2], 1≤j≤3. Suppose if not, Let all the end 

vertices of binding edges incident at vertices of [V1
1], be 

adjacent to vertices in [V2
2] and [V3

3] also end vertices of 
binding edges incident at vertices of [V2

1] be adjacent to 
vertices in [V3

2] and [V1
2] end vertices of binding edges 

incident at vertices of [V3
1] be adjacent to vertices in [V1

2] 
and [V2

2] then no vertex in [V3
1] is adjacent to any vertex in 

[V1
2] and [V2

2] a contradiction. See Figure 2(c). This 
argument is also true for [Vi

1], i = 2, 3.  Vertex set V(Q4,2) 
can be partitioned into [V1], [V2] and [V3] such that, each of 
[V1], [V2] contains at most 6 vertices of V (Q4,2) and [V3] 
contains at most 3 vertices of V(Q4,2). We have |[V1]|=2, 
|[V2]|=2 and |[V3]|=1. Let [V1] ={P,Q}, where P: p1p2p3 and 

Q: q1q2q3 are in (Q4,2)1.Then |∪   
 N(pi)∩(Q4,2)2|=3 and 

|∪   
 N(qi)∩(Q4,2)2|=3. Hence  ∪   

 N (pi)∩(Q4,2)2 and ∪   
 N 

(qi)∩(Q4,2)2  are not in [V1]. This implies ∪   
 N (pi)∩(Q4,2)2 

and ∪   
 N (qi)∩(Q4,2)2 are in [V2] and [V3] . Now let [V2]= 

{R, S},where R: r1r2r3 and S: s1s2s3 are in (Q4,2)1. Then 

|∪   
 N (ri)∩(Q4,2)2|=3 and  ∪   

 N(si)∩(Q4,2)2|=3. Hence 

∪   
 N (ri)∩(Q4,2)2 and ∪   

 N (si)∩(Q4,2)2 are not in [V2]. 

This implies ∪   
 N (ri)∩(Q4,2)2 and ∪   

 N (si)∩(Q4,2)2 are in 
[V3] and [V1] . Let [V3] = {T}, where T : t1t2t3 is in (Q4,2)1. 

Then |∪   
 N (ti)∩(Q4,2)2|=3.  Hence ∪   

 N (ti)∩(Q4,2)2 is not 

in [V3]. This implies ∪   
 N (ti)∩(Q4,2)2 is in [V1] and [V2] .  

Similarly (Q4,2)3 is partitioned as in (Q4,2)2 and (Q4,2)4 is 
partitioned as in (Q4,2)1. Let u1 be the unsaturated vertex in 
(Q4,2)1. Then |N(u1)| = 5. The edges incident at vertices of 
N(u1) are adjacent to vertices in any one of [Vi

1],  with 
|[Vi

1]|=2, 1≤i≤3. Without loss of generality let u1 be adjacent 
to a vertex in [V1

1], Similarly let u2 be the unsaturated vertex 
in (Q4,2)2. Since |N(u2)| = 5, the edges incident at vertices of 
N(u2) are adjacent to vertices in any one of [Vi

2], with 
|[Vi

2]|=2, 1≤i≤3.  This implies u2 is adjacent to a vertex in 
[V1

2].  For the same reason u3 is adjacent to a vertex in [V1
3], 

and u4 is adjacent to a vertex in [V1
4].  Hence the edges 

incident at vertex ui,  ≤ ≤  are adjacent to vertices in at 
most one of [V1

i], [V2
i], [V3

i],  ≤ ≤  in each (Q4,2)i  ≤ ≤ . 
This implies   ,  ≤ ≤  is adjacent to at most two of [V1

i],  
[V2

i], [V3
i],  ≤ ≤  in (    ). Since (Q4,2)1  (Q4,2)4 and (Q4,2)2 

  (Q4,2)3, the unsaturated vertices from  
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Fig. 2. (a) and (b) Possibilities of adjacent vertices of 

u1  (c) Possibilities of binding edges 

each (Q4,2)1, (Q4,2)2, (Q4,2)3 and (Q4,2)4 induce a vertex 
disjoint path of length 2, leaving out one vertex 
unsaturated. This implies that the three vertices u2, u3 
and u4 are adjacent to at most two vertex sets. 
Therefore ipp(Q6,2, P3) ≥ 3. 
Lemma 1.5. The induced   -packing k-partition number of 

Qn,k satisfies ipp(Qn,k , P3)≥   
 

 
 , n ≥ 6, and k = 2. 

Proof.  We prove the result by induction on the dimension n 
of the Enhanced hypercube network Qn,k . We prove that an 
unsaturated vertex ui, 1≤i≤4 in (Qn−2,2)i, 1≤i≤4 is adjacent to 

 
   

 
 vertices in  

   

 
  partition sets of (Qn−2,2)i, 1≤i≤4. We 

begin with n = 8. Q 8,2 contains four copies of Q6,2 say 
(Q6,2)i,  1≤i≤4. By Lemma 1.4, ipp(Q6,2, P3)≥ 3, leaving out 
one vertex unsaturated. Let [V1

i], [V2
i], [V3

i] be the induced 
P3-packing 3-partition sets of, Q6,2, 1≤i≤4.  One vertex ui, 
1≤i≤4 in each Q6,2, 1≤i≤4 is not included in any of [V1

i], 

[V2
i], [V3

i], 1≤i≤4. For optimal induced P3-packing  
 

 
  

partition, it is necessary that the sub graph induced by u1, u2, 
u3 and u4 contains a path of length 2 in Q8,2. Consider u1 in 
(Q6,2)1, degQ(6,2)1 (u1)= 7. If u1 is adjacent to vertices in 
[V1

1], [V2
1], [V3

1], then the 3-path containing u1 cannot be 
included in any of [V1

1], [V2
1], [V3

1]  a contradiction. 
Suppose u1 is adjacent to vertices in any one of [Vi

1] 1≤i≤3, 
then ipp(Q6,2, P3)≥3 a contradiction. Hence u1 is adjacent to 
7 vertices in at most two of [Vi

1], 1≤i≤3. This argument is 
also true for ui in (Q6,2)i, 2≤i≤4. This implies that the three 
vertices u1, u2 and u3 are adjacent to at most three vertex 

sets. This implies ipp(Q8,2, P3)≥ 
 

 
 . Assume the result is true 

for Enhanced hypercube with dimension less than or equal 
to n−1.   Consider Qn,k . When n is even, k is even fixed as 2. 
Qn,k contains four copies of Qn−2,2, say (Qn−2,2)1, (Qn−2,2)2, 
(Qn−2,2)3 and (Qn−2,2)4. Let [V1

i], [V2
i], [V3

i], …,  
 
   

 
 

 ], be the 

included P3-packing  
   

 
 - partition sets of (Qn−2,2)i, 1≤i≤4. 

One vertex ui, 1≤i≤4 in each (Qn−2,2)i, 1≤i≤4 is not included 
in any of [V1

i], [V2
i], [V3

i
], …,  

 
   

 
 

 ], 1≤i≤4. For optimal 

induced H-packing k-partition, it is necessary that the sub 
graph induced by u1, u2, u3 and u4 contains a path of length 2 

in Qn,k .   By the Induction hypothesis, (Qn−2,2)1,P3)≥  
   

 
  

leaving out one vertex unsaturated. Label the vertices [V1
1], 

[V2
1], [V3

1],…,  
 
   

 
 

 ], in (Qn−2,2) 1 as follows.    

Let φ be the mapping from {[V1
1], [V2

1], [V3
1], …,  

 
   

 
 

 ] } 

to {1, 2, 3, ...,  
   

 
 ,  

   

 
 }, such that φ([Va])=a.  

Similarly ipp(Qn−2,2) 2, P3) is greater than or equal to  
   

 
 , 

each of them leaving out one vertex unsaturated. Label the 
vertices [V1

2], [V2
2], [V3

2
], …,  

 
   

 
 

 ], (Qn−2,2) 2 as follows.  

Let φ be the mapping from {[V1
2], [V2

2], [V3
2
], …,  

 
   

 
 

 ] } 

to {1,2,3,  
   

 
 , …,  

   

 
 }, such that φ([Va ]) = a + 1. Let u1 

be the unsaturated vertex in (Qn−2,2)1. Then |N (u1)| = n−2.   
 By the induction hypothesis the edges incident at vertices of 

 N (u1) are adjacent to vertices in at most  
   

 
  partition sets. 

For the same reason ui, 2≤i≤4 is adjacent to vertices in at 

most 
   

 
  partition sets. In Qn,k the unsaturated vertex from 

each (Qn−2,2)1, (Qn−2,2)2, (Qn−2,2)3  and (Qn−2,2)4  induce a 
vertex disjoint path of length 2, leaving out one vertex 

unsaturated. Hence ui, 1≤i≤4 is adjacent to at most  
   

 
  

partition sets in Qn,k .  Since (Qn−2,2)1  (Qn−2,2)4 and (Qn−2,2)2 
  (Q n−2,2)3, the three vertices u1, u2 and u3 are adjacent to at 

most  
   

 
  partition sets. Therefore ipp(Qn,k , P3) ≥ 

 

 
 . 

Suppose n is odd. Qn,k contains two copies of Qn−1,2, say 
(Qn−1,2)1, (Qn−1,2)2. The induced P3-packing k-partition 

number of (Qn−1,2)1 is  
   

 
   leaving out one vertex 

unsaturated.  Since (Qn−1,2)1  is even.  The role of the 
partition sets in (Qn−1,2)1  is the same as that of (Qn−1,2)2. The 

union is an optimal induced P3-packing  
 

 
 -partition leaving 

out two unsaturated vertices in Qn,k . 
Theorem 1.6. The induced P3-packing k-partition number of 

Qn,k is  
 

 
 , that is, ipp(Qn,k , P3) =  

 

 
 , n≥6. 

Proof. Let [V1
1], [V2

1], [V3
1
], …, [     

  
 ] , [V1

2], [V2
2], [V3

2], 

…, [     
  

 ], [V1
3], [V2

3], [V3
3
], …, [     

  
 ] and [V1

4], [V2
4], 

[V3
4
], …, [     

  
 ] be the partition sets of (Qn−2,2)1, (Qn−2,2)2, 

(Qn−2,2)3 and (Qn−2,2)4 leaving out one vertex unsaturated 
respectively.  By Lemma 1.4, the binding edges incident at 
vertices of [Vi

1], 1≤i≤     

 
 , have their other ends in exactly 

in one [Vj
2], 1≤j≤    

 
 ,  in Qn-2,k .Without loss of generality 

we say that edges are between [Vi
1], and [Vi+1

1], 1≤i≤    

 
 . 

The role of the partition sets in (Qn−2,2)1 is the same as that 
of (Qn−2,2)4 and the partition sets in (Qn−2,2)2 is the same as 
that of (Qn−2,2)3. By construction the four left out vertices 
induce a cycle C in Qn,k. Let P be a sub path of length 2 of C 
in Qn,k . The     

 
  partitions sets constructed by our method 

together with P is an optimal induced P3-packing   
 
  -

partition leaving out one vertex unsaturated 
in Qn,k .  
Theorem 1.7. Let G be the Enhanced hypercube network 
Qn,2, n≥2. Then G has perfect C4 - packing. 
Proof. By induction method we prove the result on the 
dimension n of the Enhanced hypercube network Qn,2. We 
begin with n = 2. P2 ={(00, 01, 11, 10)} is a perfect C4-

packing. In (Q3,2), P3 = 0P2∪1P2 is a perfect C4-packing 
where iP2 denotes the set of paths in P2 prefixed by i, i= 0, 
1.  
Assume the result to be true for Qn,2. Consider Qn+1,2. By 
induction hypothesis each copy of Qn,2 in Qn+1,2 contains a 
perfect C4-packing. The union 
is a perfect C4-packing in Qn+1,2 

that is Pn+1,2= 0Pn,2∪1Pn,2. 

https://www.openaccess.nl/en/open-publications
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Lemma 1.8. ipp(Q3,2, C4) = 2. 
Proof. Without loss of generality, let C1: c1c2c3c4 be a cycle 
of length 4 in Q3,2. Then |      

 
   | = 4. Hence another 

cycle C2 of length 4 such that V (C1)∩V(C2) =   contains at 

least one vertex from |      
 
   |. This implies that ipp(Q3,2 

,C4) ≥ 2.  Now let C1 = {(010, 000, 001, 011)} and 

C2 = {(110, 100, 101, 111)}. C1∪C2 is an optimal induced 
C4-packing 2-partition in Q3,2.  
 
Lemma 1.9. ipp(Qn,2,C4) = 2. 
Proof. We prove the result by induction on the dimension (n, 
k) of the Enhanced hypercube network Qn,2. We begin with   
n = 5. Q5,2 contains four copies of Q3,2, say (Q3,2)1, (Q3,2)2, 
(Q3,2)3, (Q3,2)4. Let [Vi

1] and [Vi
2] be the induced 2-partition 

sets of (Q4,2)i, i =1,2,3,4. The binding edges incident at 
vertices of [Vi

1], 1≤i≤2, have their other ends in exactly in 
one [Vj

2], 1≤j≤2 in Q5,3. By Lemma 1.8, ipp(Q3,2)C4) is 2.  
Let [V1], [V2] be the induced C4-packing 2-partition sets of 
(Q3,2)1.  Without loss of generality each of [V1

1], [V2
1], 

contains at most 4 vertices of V(Q3,2)1. Let[V1] = {C1}, 
where C1: a1a2a3a4  is in (Q3,2)1. Then |   

      ) (Q3,2)2| = 
4.  
Hence    

       )  (Q3,2)2 is not in [V1]. This implies  
   

       ) (Q3,2)2 is in [V2]. Let [V2] = {C2}, where  
C2: b1b2b3b4 is in (Q3,2)1. Then|    

      ) (Q3,2)2| = 4. 
Hence    

       ) (Q3,2)2  is not in [V2]. This implies 
    

      ) (Q3,2)2  is in  [V1].  Similarly (Q3,2)3 is 
partitioned  as  in  (Q3,2)2   and  (Q3,2)4   is  partitioned as in 

(Q3,2)1. [V1
i]∪[V2

i] i = 1, 2, 3, 4 is an optimal induced C4-
packing 2-partition in Q5,2. Assume that the result is true for 
Qn−1,2. Qn,2 contains two copies of Qn−1,2, say (Qn−1,2)1 and 
(Qn−1,2)2. By the induction hypothesis ipp((Qn−1,2)1, C4) is 2. 

Since (Qn−1,2)1  (Qn−1,2)2 , [V1
i]∪[V2

i], i = 1, 2 is an optimal 

induced C4-packing 2-partition in Qn,2. 

III. AUGMENTED     CUBES  

 
We define the augmented cube AQn. As with hypercubes, 
augmented cubes admit several definitions.  
Let n ≥ 1 be an integer. The Augmented cube AQn of 
dimension n has 2n vertices each labelled by an n bit binary 
string a1a2a3..... an.  We define AQ1  = K2.  For n ≥ 2, AQn  is 
obtained by taking two copies of the augmented cube AQn−1, 
denoted by AQ0

n−1  and AQ1
n−1, and adding 2∗2n−1 edges 

between the two as follows [5], [6]. Let V(AQ0
n-1) = 

0a2a3....an; ai = 0 or 1 and V(AQ1
n-1)= 0b2b3....bn; bi=0 or 1. A 

vertex A= 0a2a3....an of (AQ0
n-1) is joined to a vertex B 

=1b2b3....bn  of (AQ1
n-1) if and only if for every i, 2 ≤ i ≤ n 

either 
(i)ai=bi; in this case, AB is called hypercube edge, or  
(ii)ai = bi; in this case, AB is called complementary edge. 

000 100

010 011

001

110

101

111

(a) (b)  
Fig. 3. (a) An induced P3-packing 2-partition number of 
AQ3 (b) An induced P3-packing 3 - partition number of 

AQ4 

Lemma 2.1. ipp(AQ4, P3) = 5. 
Proof. AQ4 is packed with 5 vertex disjoint paths of length 2, 
leaving out one vertex unsaturated. Suppose ipp(AQ4, P3) = 
4. Let [V1], [V2], [V3] and [V4] be the induced P3-packing 4-
partition sets. The possibility is, (i) |[V1]| = 2, |[V2]| = 1, |[V3]| 
= 1 and |[V4]| = 1. We claim that |[V1]| ≥ 2 is not possible.  
Suppose |[V1]|=2. Let P: uvw be in [V1]. Then 

|N(u)∪N(v)∪N(w)|=9. Now V(P) and its neighboring 
vertices constitute 12 vertices leaving 4 vertices unsaturated. 
If Q is the other path of length 2 in [V1], then N(V(P))=N(V 
(Q)), a contradiction. 
If |[V1]| = 2 is not possible, then |[V1]|≥2 . The only possible 
way is |[V1]| = 1, |[V2]| = 1, |[V3]| = 1, |[V4]| = 1, |[V5]| = 1. 
This implies that ipp(AQ4)≥5.  Now let P = {(0001, 0000, 
0100)}, Q = {(0101, 0111, 0110)}, R = {(1001, 1000, 
1010)}, S = {(1101, 1100, 1110)}, T = {(1111, 1011, 

0011)}. P∪Q∪R∪S∪T is an optimal induced P3-packing 5-
partition leaving out one vertex unsaturated in AQ4. See Fig. 
3(b). 
Lemma 2.2. ipp(AQ6, P3) ≥ 5. 
Proof. AQ6 contains four copies of AQ4, say (AQ4)i, 1≤i≤4. 
By Lemma 2.1, ipp(AQ4)≥5. Let [V1

i], [V2
i], [V3

i], [V4
i], [V5

i] 
be the induced P3-packing 5-partition sets of (AQ4)i, 1≤i≤4.  
One vertex ui, 1≤i≤4 in each (AQ4)i, 1≤i≤4 is not included in 
any of [V1

i], [V2
i], [V3

i], [V4
i], [V5

i], 1≤i≤4. For optimal 
induced P3-packing 5-partition, it is necessary that the sub 
graph induced by u1, u2, u3 and u4 contains a path of length 2 
in AQ6. Consider u1 in (AQ4)1, deg(AQ4)1 (u1)=7. If u1 is 
adjacent to vertices in [V1

1], [V2
1] ,[V3

1], [V4
1] and [V5

1] then 
the P3-path containing u1 cannot be included in any of [V1

1], 
[V2

1], [V3
1], [V4

1]or[V5
1] a contradiction. Suppose one vertex 

adjacent to u1 is in [V5
1], two vertices adjacent to u1 are in 

[V1
1], two vertices adjacent to u1 are in [V2

1], one vertex 
adjacent to u1 is [V3

1], one vertex adjacent to u1 [V4
1] then a 

5-cycle is induced by these vertices, a contradiction. For the 
same reason, u1 cannot be adjacent to 7 vertices in [Vi

1] with 
|[Vi

1]| = 2, 1≤i≤5.  Hence u1 is adjacent to 7 vertices in any 
one of [Vi

1] with |[Vi
1]| = 1, 1≤i≤5. This argument is true for 

ui in (AQ4)i , 2≤i≤4. We now claim that the binding edges in 

(AQ4)1∪(AQ4)2)\ (AQ4)1 incident at vertices of [Vi
1], 1≤i≤5, 

have their other ends in exactly one [Vj
2] , 1≤j≤5. Suppose 

not, without loss of generality let all the end vertices of 
binding edges incident at vertices of [V1

1] be adjacent to 
vertices in [V2

2], also end vertices of binding edges incident 
at vertices of [V2

1]  
be adjacent to vertices in [V1

2] and end vertices of binding 
edges incident at vertices of [V3

1] be adjacent to vertices in 
[V4

2] also end vertices of binding edges incident at vertices 
of [V4

1] be adjacent to vertices in [V5
2] also end vertices of 

binding edges incident at vertices of [V5
1] be adjacent to 

vertices in [V3
2], then no vertex in [V5

1] is adjacent to any 
vertex in [V3

2], a contradiction. This argument is also true 
for [Vi

1], i = 2,3,4,5. Now V(AQ4) can be partitioned into 
[V1], [V2], [V3], [V4] and [V5] such that, each of [V1], [V2], 
[V3], [V4] and [V5] contains at most 3 vertices of 
V(AQ4).Therefore we have |[V1]| =1, |[V2]| = 1, |[V3]| = 1, 
|[V4]| = 1 and |[V5]| = 1. Let [V1] ={P}, where P: p1p2p3 are 
in (AQ4)1. Then |   

      ) (AQ4)2| = 3. Hence 
   

      ) (AQ4)2 are not in [V1].This implies    
    

   ) (AQ4)2 are in [V2]. Now 
let [V2] = {Q}, where Q:q1q2q3 
are in (AQ4)1.Then 
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|   
      ) (AQ4)2|=3. Hence   

      ) (AQ4)2  are not 
in [V2]. This implies    

      ) (AQ4)2 are in [V1]. Let [V3] 
= {R}, where R:r1r2r3  is in (AQ4)1. Then | 
   

      ) (AQ4)2|=3. Hence    
       ) (AQ4)2 is not in 

[V3].This implies    
      ) (AQ4)2 is in [V4]. Let [V4] = 

{S}, where S: s1s2s3  is in (AQ4)1.Then |   
      ) (AQ4)2| = 

3. Hence    
      ) (AQ4)2 is not in [V4]. This implies 

   
       ) (AQ4)2 is in [V5]. Let [V5] = {T}where T : t1t2t3 

is in (AQ4)1. Then |   
      ) (AQ4)2| = 3. Hence    

    
   ) (AQ4)2 is not in [V5]. This implies    

       ) (AQ4)2 

is in [V3]. 
Similarly (AQ4)3 is partitioned as in (AQ4)2 and (AQ4)4 is 
partitioned as in (AQ4)1. Let u1 be the unsaturated vertex in 
(AQ1)4. Then |N(u1)|=7.  
Hence the edges incident at vertices of N (u1) are adjacent to 
vertices in any one of [Vi

1] with |[Vi
1] | = 1, 1≤i≤5.  

Without loss of generality let u1 be adjacent to a vertex in 
[V1

1].  Similarly let u2 be the unsaturated vertex in (AQ4)2.  
Since |N(u2)|=7, the edges incident at vertices of N (u2) are 
adjacent to vertices in any one of [Vi

2] with |[Vi
2]|=1, 1≤i≤5.  

This implies u2  is adjacent to a vertex in [V1
2]. For the same 

reason u3 is adjacent to a vertex in [V1
3] and u4  is adjacent to 

a vertex in |[V1
4]| Hence the edges incident at vertex ui, 

1≤i≤5 are adjacent to vertices in at most one of [V1
i], [V2

i], 
[V3

i], [V4
i], [V5

i]  1≤i≤4 in each (AQ4)i, 1≤i≤4. This implies 
ui, 1≤i≤4 is adjacent to at most one of [V1

i], [V2
i], [V3

i], [V4
i], 

[V5
i], 1≤i≤5 in AQ6. Since (AQ4)1 (AQ4)4 and 

(AQ4)2 (AQ4)3, the unsaturated vertices from each (AQ4)1, 
(AQ4)2, (AQ4)3 and (AQ4)4 induce a vertex disjoint path of 
length 2, leaving out one vertex unsaturated. This implies 
that the three vertices u1, u2 and u3 are adjacent to at most 
four vertex sets. Therefore ipp(AQ6) ≥ 5. 

Lemma 2.3. ipp(AQn) ≥ 
 

 
   2, n ≥ 6. 

Proof. By induction method, we prove the result on the 
dimension n of the Augmented cube network AQn. We 
prove something more and prove that an unsaturated vertex 

ui, 1≤i≤4 in (AQn−2)i, 1≤i≤4 is adjacent to  
   

 
   vertices in 

 
   

 
   partition sets of (AQn−2)i, 1≤i≤4.  We begin with n=8. 

AQ8 contains four copies of AQ6, say (AQ6)i, 1≤i≤4. By 

lemma, 2.2 ippAQ6 ≥  
 

 
   2, leaving out one vertex 

unsaturated. Let [V1
i], [V2

i], [V3
i], [V4

i] and [V5
i] be the 

induced P3-packing 5-partition sets of (AQ6)i, 1≤i≤4.  One 
vertex ui, 1≤i≤4 in each (AQ6)i, 1≤i≤4 is not included in any 
of [V1

i], [V2
i], [V3

i], [V4
i], [V5

i], 1≤i≤4. For optimal induced 

P3-packing  
 

 
   2 partition, it is necessary that the sub 

graph induced by u1, u2, u3 and u4 contains a path of length 2 
in AQ8. Consider u1 in (AQ6)1, deg(AQ6)1(u1)= 11. If u1 is 
adjacent to vertices in [V1

1], [V2
1], [V3

1], [V4
1] and [V5

1] then 
the 5-path containing u1 cannot be included in any of [V1

1], 
[V2

1], [V3
1], [V4

1] and [V5
1] a contradiction. Suppose u1 is 

adjacent to vertices in any one of [Vi
1], 1≤i≤5, then ipp(AQ6) 

>  
 

 
   2 a contradiction. Hence u1 is adjacent to 11 vertices 

in at most one of [Vi
1], 1≤i≤5.  This argument is also true for 

ui in (AQ6)i, 2≤i≤4.  This implies that the three vertices u1, u2 
and u3 are adjacent to at most five vertex sets. This implies 

ipp(AQ8) ≥  
 

 
   2. 

Assume  the  result  is  true  for  Augmented  cube  with  
dimension less than or equal to  n−1. Consider AQn. When n 
is even.  AQn contains four copies of AQn−2, say (AQn−2)1, 

(AQn−2)2, (AQn−2)3 and (AQn−2)4. Let [V1
i], [V2

i], [V3
i],…, 

 
 
   

 
 

 ],  be the included P3-packing  
 

 
   2 partition sets of 

(AQn−2)i, 1≤i≤4.  
One vertex ui, 1≤i≤4 in each (AQn−2)i, 1≤i≤4 is not included 
in any of [V1

i], [V2
i], [V3

i
], …,  

 
   

 
 

 ], 1≤i≤4. For optimal 

induced H-packing k-partition, it is necessary that the sub 
graph induced by u1, u2, u3 and u4 contains a path of length 2 

in AQn.   By the induction hypothesis, ipp(AQn−2)1) ≥  
 

 
   2  

leaving out one vertex unsaturated. Label the vertices of 
[V1

1], [V2
1], [V3

1],…,  
 
   

 
 

 ],  in (AQn−2)1.  Let φ be the 

mapping from  {[V1
1], [V2

1], [V3
1],…,  

 
   

 
 

 ],  
 
   

 
 

 ]}, to 

{1,2,3,...,  
   

 
 ,  

   

 
 }, such that φ([Va]) = a. Similarly 

ipp(AQn−2)2  is greater than or equal to  
   

 
  , each of them 

leaving out one vertex unsaturated. Label the vertices of  
[V1

2], [V2
2], [V3

2],…,  
 
   

 
 

 ] in (AQn−2)2 as follows.  Let φ be 

the mapping from {[V1
2], [V2

2], [V3
2
], …,  

 
   

 
 

 ],  
 
   

 
 

 ]}, to 

{1, 2, 3,...,  
   

 
 ,  

   

 
 } such that φ([Va ]) = a + 1. 

Let u1 be the unsaturated vertex in (AQn−2)1.Then |N(u1)| = 
n−2. By the induction hypothesis the edges incident at 

vertices of N(u1) are adjacent to vertices in at most  
   

 
   

partition sets. For the same reason ui, 2≤i≤4 is adjacent to 

vertices in at most  
   

 
   partition sets. In AQn the 

unsaturated vertex from each (AQn−2)1, (AQn−2)2, (AQn−2)3  
and (AQn−2)4  induce a vertex disjoint path of length 2, 
leaving out one vertex unsaturated. Hence ui, 1≤i≤4 is 

adjacent to at most  
   

 
   2 partition sets in AQn. Since 

(AQn−2)1   (AQn−2)4 and (AQ n−2)2 (AQ n−2)3, the three 

vertices u1, u2 and u3 are adjacent to at most  
   

 
   2 

partition sets. Therefore ipp(AQn)≥  
 

 
   2. Suppose n is 

odd. AQn contains two copies of AQn−1, say (AQn−1)1 and 
(AQn−1)2. The induced P3-packing k-partition number of 

(AQn−1)1 is  
   

 
   leaving out one vertex unsaturated. Since 

(AQn−1)1 is even. The role of the partition sets in (AQn−1)1 is 
the same as that of (AQn−1)2.  

The union is an optimal induced P3-packing  
 

 
   2 

partition leaving out two unsaturated vertices in AQn. 

Theorem 2.4. ipp(AQn) =  
 

 
   2, n≥6. 

Proof. [V1
1], [V2

1], [V3
1
],…, [     

 
 
 ], [V1

2], [V2
2],[V3

2],…, 

[ 
 
   
  

 ], [V1
3], [V2

3], [V3
3],…, [ 

 
   
  

 ] and [V1
4], [V2

4], 

[V3
4
], …, [     

  
 ] be the partition sets (AQn−2)1, (AQn−2)2, 

(AQn−2)3 and (AQn−2)4 leaving out one vertex unsaturated 
respectively.    
By Lemma 2.2, the binding edges incident at vertices of 
[Vi

1], 1≤i≤    

 
 , have their other ends in exactly in one [Vj

2], 

1≤j≤    

 
 , in AQn−2.Without loss of generality we say that 

edges are between [Vi
1] and [Vi+1

1], 1≤i≤    

 
 . The role of 

the partition sets in (AQn−2)1 is 
the same as that of (AQn−2)4 
and the partition sets in 
(AQn−2)2 is the same as that of 

https://www.openaccess.nl/en/open-publications
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(AQn−2)3.  By construction the four left out vertices induce a 
cycle C in AQn. Let P be a sub path of length 2 of C in AQn. 

The  
   

 
   2  partitions sets constructed by our method 

together with P is an optimal induced P3-packing  
 

 
   2  

partition leaving out one vertex unsaturated in AQn. 
Lemma 2.5.  The Augmented Cube AQn, n≥2, Then AQn  
has perfect C4-packing. 
Proof.  Follows from Lemma 1.7. 
 
 
 
Lemma 2.6. The induced C4-packing k-partition number 
Augmented AQ3  is 2, that is, ipp(AQ3, C4) = 2. 
Proof.  Follows from Lemma 1.8. 
 
Lemma 2.7. ipp(AQn,C4) = 4. 
Proof. We prove the result by induction on the dimension n 
of the Augmented cube network AQn. We begin with n = 5.  
AQ5 contains four copies of AQ3, say (AQ3)1, (AQ3)2, (AQ3)3, 
(AQ3)4. Let [V1], [V2], [V3], [V4] be the induced C4-packing 
4-partition sets of (AQ3)i, i = 1, 2, 3, 4. By lemma 2.6, 
ipp(AQ3, C4) is 2.  In (AQ3)1 each of [V1

1], [V2
1], contains at 

most 4 vertices of V(AQ3)1).  Let [V1] ={C1}, where C1: 
a1a2a3a4  is in (AQ3)1.  |   

       ) (AQ3)2| = 4.   
Hence    

      ) (AQ3)2 is not in [V1].  This implies 
   

       ) (AQ3)2 is in [V2].  Let [V2] = {C2}, where C2: 
b1b2b3b4 is in (AQ3)1. Then |   

       ) (AQ3)2| = 4. 
Hence    

       )  (AQ3)2 is not in [V2]. This implies 
   

       ) (AQ3)2  is in [V1].  Let [V3], [V4] be the induced 
C4-packing partition sets of (AQ3)3.  Each of [V3

3], [V4
3]  

contains at most 4 vertices of V (AQ3)3. Let [V3] ={C3}, 
where C3: c1c2c3c4 is in (AQ3)3. Then | 
   

      ) (AQ3)4|=4. Hence    
      ) (AQ3)4  is not in 

[V3]. This implies    
       ) (AQ3)4 is in [V4]. Let [V4] = 

{C4},where C4:d1d2d3d4 is in (AQ3)4. Then Then | 
   

      ) (AQ3)4| = 4. Hence    
       ) (AQ3)4 is not 

in [V4]. This implies   
       ) (AQ3)4 is in [V3]. 

[V1
i]∪[V2

i]∪V3
i]∪[V4

i], i =1, 2, 3, 4 is an optimal induced C4-

packing 4-partition in AQ5. Assume that the result is true for 
AQn. When n is odd. AQn contains two copies of AQn−1, say 
(AQn−1)1 and (AQn−1)2. By the induction hypothesis 
ipp(AQn−1)1,C4) is 4. 

IV.  CROSSED CUBE NETWORKS 

The crossed cube has additional attractive properties. It has 
more cycles than the hypercube. A crossed cube of n 
dimensions, denoted by CQn, has 2n vertices. Each vertex of 
CQn   is identified by a unique n-bit binary string; e.g. vertex 
u = unun−1,..., u2u1, where ui 0, 1 for 1≤i≤n. The following 
are the formal definitions. Two binary strings x = x2x1 and y 
= y2y1 of length two are pair related, denoted by x y if and 
only if (x, y) = (00, 00), (10, 10), (01, 11), (11, 01) [1] [3]. 
The n- dimensional crossed cube (CQn) is a   n - label graph, 
it can be defined as follows. CQ1 is 
 

110 100

111 101

011 001

000010

1100 1110

1101 1111

1001 1011

10101000

0110 0100

0111 0101

0011 0001

00000010

(a)
(b)  

Fig. 4. (a) An induced P3-packing 2-partition number of 

CQ3 (b) An induced P3-packing 3 - partition number of 

CQ4. 

k2, the complete graph of two vertices with labels 0 and 1; 
for n>1, (CQn) consists of two (n−1) dimensional crossed 
cube      

           
 , where V      

 ) = xnxn−1.....x1/xn 
= i, (i = 0, 1).The vertex x = 0xn-1 xn-2...x1 in      

 and the 
vertex y = 1yn-1 yn-2....y1 in      

  are adjacent in CQn if:  
(1) xn-1 = yn−1 if n is even, 

(2) For 1≤ i ≤   
   

 
   , x2ix2i−1 ∼ y2iy2i−1 [1]. 

Theorem  3.1.  Let G be the Crossed cube network 
CQn(n≥2). Then G has an almost perfect P3-packing. 
Proof.  Follows from Theorem 1.1. 
Lemma 3.2. ipp(CQ3, P3) = 2. 
Proof.  Follows from Lemma 1.2. 
Lemma 3.3. ipp(CQ4, P3) = 3. 
Proof.  Follows from Lemma 1.3. 
Lemma 3.4. ipp(CQ6, P3) ≥ 3. 
Proof. CQ6 contains four copies of CQ4, say (CQ4)i, 1≤i≤4.  
By Lemma 3.3, ipp(CQ4)≥3. Let [V1

i], [V2
i], [V3

i], [V4
i] be 

the induced P3-packing 4-partition sets of (CQ4)i, 1≤i≤4. 
One vertex ui, 1≤i≤4 in each (CQ4)i, 1≤i≤4 is not included in 
any of [V1

i], [V2
i], [V3

i], [V4
i], 1≤i≤4. For optimal induced 

P3-packing 4-partition, it is necessary that the sub graph 
induced by u1, u2, u3 and u4 contains a path of length 2 in 
CQ6. Consider u1 in (CQ4)1, deg(CQ4)1 (u1)= 4. If u1 is 
adjacent to vertices in [V1

1], [V2
1], [V3

1] and [V4
1] then the 

P3-path containing u1 cannot be included in any of [V1
1], 

[V2
1], [V3

1] or [V4
1] a contradiction. Suppose two vertices 

adjacent to u1 are in [V1
1] and one vertex adjacent to u1 is in 

[V2
1] and one vertex adjacent to u1 is in [V3

1] then a 3-cycle 
is induced by these vertices, a contradiction. For the same 
reason, u1 cannot be adjacent to 4 vertices in [Vi

1] with |[Vi
1]  

 
 
|=1, 1≤i≤4. Hence u1 is adjacent to 4 vertices in any one of 
[Vi

1] with |[Vi
1] |= 2, 1≤i≤4. This argument is also true for ui 

in (CQ4)i, 2≤i≤4. We claim that the binding edges in 

(CQ4)1∪(CQ4)2)\(CQ4)1  incident at vertices of [Vi
1], 1≤i≤4, 

have their other ends in exactly one [Vj
2], 1≤j≤4. Suppose 

not, without loss of generality, let all the end vertices of 
binding edges incident at vertices of [V1

1] be adjacent to 
vertices in [V3

2] and [V4
2] also end vertices of binding edges 

incident at vertices of [V2
1] be adjacent to vertices in [V3

2] 
and [V4

2] and end vertices of 
binding edges incident at 
vertices of [V3

1] be adjacent to 
vertices in [V2

2] [V1
2] [V4

2] end 
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vertices of binding edges incident at vertices of [V4
1]  be 

adjacent to vertices in [V3
2] and [V2

2] [V1
2], then no vertex in 

[V4
1] is adjacent to any vertex in [V1

2], [V2
2] and [V3

2] a 
contradiction. This argument is also true for [Vi

1],i = 2, 3, 4. 
Now V(CQ4) can be partitioned into [V1], [V2], [V3] and [V4] 
such that, each  of  [V1], [V2], [V3] contains at most 9 
vertices of   V(CQ4)  and  [V4]  contains  at  most  6  vertices  
of  V (CQ4). We have |[V1]| =1, |[V2]| =1 and |[V3]| =1,|[V4]| 
=2. Let [V1] = {P}, where P: p1p2p3 are in (CQ4)1. 
Then|   

      )  (CQ4)2| = 3.  
Hence    

      ) (CQ4)2 is not in [V1].This  implies  
   

      ) (CQ4)2 is in [V3] and [V4]. Now let [V2] = {Q}, 
where Q:q1q2q3 in (CQ4)1.Then |   

      ) (CQ4)2| = 3. 
Hence    

       ) (CQ4)2 is not in [V2]. This implies  
   

       ) (CQ4)2 is in [V3] and [V4]. Let [V3] ={R}, 
where R: r1r2r3 are in (CQ4)1. Then |    

       ) (CQ4)2| = 
3.  Hence    

       ) (CQ4)2 is not in [V3].  This implies  
   

       ) (CQ4)2 is in [V1] and [V2]. Let [V4] ={S,T }, 
where s1s2s3 and t1t2t3 are in (CQ4)1. Then |   

      ) 
 (CQ4)2| = 3 and |   

       ) (CQ4)2| = 3.  Hence    
    

   ) (CQ4)2 and    
       ) (CQ4)2 are not in [V4].This 

implies    
      ) (CQ4)2 and    

       ) (CQ4)2 are in 
[V2], [V3] and [V1].  
Similarly (CQ4)3 is partitioned as in (CQ4)2 and (CQ4)4 is 
partitioned as in (CQ4)1. Let u1 be the unsaturated vertex in 
(CQ4)1.Then |N (u1)| = 4. Hence the edges incident at 
vertices of N(u1) are adjacent to vertices in any one of [Vi

1] 
with |[Vi

1]| = 1, 1≤i≤4. Without loss of generality, let u1 be 
adjacent to a vertex in [V1

1]. Similarly let u2 be the 
unsaturated vertex in (CQ4)2. Since |N(u2)| = 4, the edges 
incident at vertices of N(u2) are adjacent to vertices in any 
one of [Vi

2] with |[Vi
2] | =1, 1≤i≤4.This implies u2 is adjacent 

to a vertex in [V1
2] For the same reason u3 is adjacent to a 

vertex in [V1
3] and u4 is adjacent to a vertex in [V1

4].   Hence 
the edges incident at vertex ui, 1≤i≤4 are adjacent to vertices 
in at most one of [V1

i], [V2
i], [V3

i] and [V4
i],  1≤i≤4 in each 

(CQ4)i, 1≤i≤4.This implies ui, 1≤i≤4 is adjacent to at most 
two of  [V1

i], [V2
i], [V3

i] and [V4
i], 1≤i≤4 in CQ6. Since 

(CQ4)1 (CQ4)4  and (CQ4)2 (CQ4)3, the unsaturated 
vertices from each (CQ4)1, (CQ4)2, (CQ4)3 and (CQ4)4 induce 
a vertex disjoint path of length 2, leaving out one vertex 
unsaturated. This implies that the three vertices u1, u2 and u3 
are adjacent to at most three vertex sets. Therefore 
ipp(CQ6)=4. 

Lemma 3.5. ipp(CQn, P3) ≥  
 

 
   1, n ≥ 6. 

Proof.  Using induction method, we prove the result on the 
dimension n of the Crossed cube network CQn. We prove 
something more and prove that an unsaturated vertex ui, 

1≤i≤4 in (CQn−2)i, 1≤i≤4 is adjacent to  
   

 
  vertices in 

 
   

 
 partition sets of (CQn-2) i, 1≤i≤4.  We begin with n = 8.  

CQ8 contains four copies of CQ6, say (CQ6)i, 1≤i≤4.  By 

lemma (3.4), ipp(CQ6) ≥ 
 

 
    leaving out one vertex 

unsaturated. Let [V1
i], [V2

i], [V3
i] and [V4

i] be the induced 
P3-packing 4-partition sets of (CQ6)i, 1≤i≤4. One vertex ui, 
1≤i≤4 in each (CQ6)i, 1≤i≤4 is not included in any of [V1

i], 
[V2

i],  

[V3
i] and [V4

i], 1≤i≤4. For optimal induced P3-packing 

 
 

 
    partition, it is necessary that the sub graph induced 

by u1, u2, u3 and u4 contains a path of length 2 in CQ8. 
Consider u1 in (CQ6)1, deg(CQ6)1 (u1)= 6.  If u1 is adjacent 
to vertices in [V1

1],[V2
1],[V3

1] and [V4
1], then the 4-path 

containing u1  cannot be included in any of [V1
1],[V2

1],[V3
1] 

and [V4
1], a contradiction.  Suppose u1 is adjacent to vertices 

in any one of [Vi
1], 1≤i≤4, then ipp(CQ6)> 

 

 
    a 

contradiction. Hence u1 is adjacent to 6 vertices in at most 
two of [Vi

1], 1≤i≤4.  This argument is also true for ui in 
(CQ6)i, 2≤i≤4. This implies that the three vertices u1, u2 and 
u3 are adjacent to at most four vertex sets. This implies 

ipp(CQ8) ≥  
 

 
   .  

Assume the result is true for Crossed cube with dimension 
less than or equal to n−1.  Consider CQn. When n is even.  
CQn contains four copies of CQn−2, say (CQn−2)1, 
(CQn−2)2,(CQn−2)3 and (CQn−2)4. Let [V1

i],  [V2
i], [V3

i],…, 

 
 
   

 
 

 ],  be the included P3-packing  
 

 
    partition sets of 

(CQn−2)i , 1≤i≤4.One vertex ui, 1≤i≤4 in each (CQn−2)i, 1≤i≤4 
is not included in any of [V1

i],[V2
i], [V3

i],…,  
 
   

 
 

 ], 1≤i≤4.  

For optimal induced H-packing k-partition, it is necessary 
that the sub graph induced by u1, u2, u3 and u4 contains a 
path of length 2 in CQn. By the induction hypothesis, 

ipp(CQn−2)1) ≥  
   

 
    leaving out one vertex unsaturated.  

Label the vertices of [V1
i], [V2

i], [V3
i],…,  

 
   

 
 

 ],   in 

(CQn−2)1 .  Let φ be the mapping from {[V1
1], [V2

1], [V3
1],…, 

 
 
   

 
 

 ],  
 
   

 
 

 ]} to {1, 2, 3,...,  
   

 
 ,  

   

 
 } such that 

φ([Va])=a.   

Similarly ipp(CQn-2)2 is greater than or equal  
   

 
   , each 

of  them leaving out one vertex unsaturated. Label the 
vertices of [V1

2], [V2
2], [V3

2],…,  
 
   

 
 

 ]  in (CQn−2)2  as 

follows. Let φ be the mapping from {[V1
2], [V2

2], [V3
2],…, 

 
 
   

 
 

 ],  
 
   

 
 

 ]} to {1, 2, 3,...,  
   

 
 ,  

   

 
 } such that φ([Va]) 

= a + 1. Let u1 be the unsaturated vertex in (CQn−2)1. Then 
|N(u1)| = n−2.   By the induction hypothesis the edges 
incident at vertices of N (u1) are adjacent to vertices in at 

most  
   

 
   partition sets. For the same reason ui, 2≤i≤4 is 

adjacent to vertices in at most  
   

 
  partition sets. In CQn , 

the unsaturated vertex from each (CQn−2)1, (CQn−2)2, 
(CQn−2)3  and (CQn−2)4  induce a vertex disjoint path of  
length 2, leaving out one vertex unsaturated. Hence ui, 

1≤i≤4 is adjacent to at most  
   

 
     partition sets in CQn. 

Since (CQn−2)1 (CQn−2)4 and (CQ n−2)2 (CQ n−2)3, the three 

vertices u1, u2 and u3 are adjacent to at most  
   

 
      

partition sets. Therefore ipp(CQn) ≥ 
 

 
    . Suppose n is 

odd. CQn contains two copies of CQn−1, say (CQn−1)1 and 
(CQn−1)2. The induced P3-packing k-partition number of 

(CQn−1)1 is  
   

 
     leaving 

out one vertex unsaturated. 
Since (CQn−1)1 is even. The 
role of the partition sets in 
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(CQn−1)1 is the same as that of (CQn−1)2. The union is an 

optimal induced P3-packing  
 

 
    partition leaving out 

two unsaturated vertices in CQn. 

Theorem 3.6. ipp(CQn) =  
 

 
    , n≥6. 

Proof. [V1
1], [V2

1], [V3
1],…, [     

  
 ], [V1

2], [V2
2], [V3

2
], …, 

[ 
 
   
  

 ], [V1
3],  [V2

3], [V3
3],…, [ 

 
   
  

 ] and [V1
4],[V2

4], 

[V3
4
], …, [ 

 
   
  

 ] be the partition sets of (CQn−2)1, (CQn−2)2, 

(CQn−2)3 and (CQn−2)4 leaving out one vertex unsaturated 
respectively. By previous lemma, the binding edges incident 
at vertices of [Vi

1], 1≤i≤    

 
 , have their other ends in 

exactly in one [Vj
2], 1≤j≤    

 
 in CQn-2. Without loss of 

generality we say that edges are between [Vi
1] and [Vi+1

1], 
1≤i≤    

 
  .The role of the partition sets in (CQn−2)1 is the 

same as that of (CQn−2)4 and the partition sets in (CQn−2)2 is 
the same as that of (CQn−2)3.  By construction the four left 
out vertices induce a cycle C in CQn. Let P be a sub path of 

length 2 of C in CQn. The   
   

 
       partitions sets 

constructed by our method together with P is an optimal 

induced P3-packing  
   

 
      partition leaving out one 

vertex unsaturated in CQn. 
Theorem 3.7.  The Crossed Cube CQn, n≥2, Then CQn has 
perfect C4-packing. 
Proof.  Follows from Theorem 1.7. 
Lemma 3.8.  ipp(CQ3, C4) = 2.  
Proof. Follows from Lemma 1.8. 
Lemma 3.9.  ipp(CQn, C4) = 4.  
Proof. Follows from Lemma 1.9.    

V. CONCLUSION 

In this paper, we have proved that the induced H-packing 
k- partition problem where H P3 exists for Enhanced 
Hypercube, Augmented cubes and Crossed cubes. Further 
we obtain ipp(G, C4) when G is Enhanced hypercube, 
Augmented Cubes and Crossed Cubes networks . An 
induced H-packing k-partition for Generalized Exchanged 
Hypercubes, Folded Hypercubes, Twisted cubes, Spined 
cubes, Parity cubes and Petersen Cubes are under 
investigation. 
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