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Analysis of Sierpinski Triangle Based
on Fuzzy Triangular Numbers
and Dihedral Group

T. Sudha and G. Jayalalitha

Abstract Fractals are indefinitely complex patterns such as self-similar across at
different scales; for example, Sierpinski triangle is a fractal. This paper analysed in
the Sierpinski triangle. It is considered as equilateral triangles such as 1 unit, k unit
and k + 1 unit. Each iteration is divided as [(0, 1/4, ½, …, 1)], [(0, k/4, k/2…, k)],
[(0, (k + 1)/4, (k + 1)/2,… (k + 1))], so on. It analysed this triangle which satisfies
fuzzy triangular numbers and the number of the theoretical aspect of fuzzy triangular
numbers (FTNs) in self-similarity set of fractal set (Sierpinski triangle) and some
arithmetic operations of α-ut and discussed that this triangle satisfied the centroid
and median of the normal triangle. Multiplication of fuzzy triangular numbers α-cuts
is explained graphically. It also analysed that these smaller equilateral triangles form
a group, and this group satisfies the property of dihedral group.

Keywords Fuzzy numbers · Fractal · Sierpinski triangle · Fuzzy triangular
numbers · Centroid of the triangle · Dihedral group
AMS Classification 2000 · 03E72 · 28A80 · 20D15

1 Introduction

In earlier times, there was no mathematical concept to describe the uncertain (vague-
ness) situation. Fuzzy numbers are defined in uncertainty situation, and it is playing
a vital role in many applications, but the main problem in the development of the
application is the computational complexity. Hence, more attention is needed to
simply arithmetic computation with fuzzy numbers. By restricting the fuzzy number
to triangular fuzzy numbers, addition and subtraction become simpler [1].
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1.1 Fuzzy Number

Fuzzy number, which is the extension of real numbers, has its properties which can
be related to the theory of numbers [2]. It is widely used in engineering applications
because of their suitability for representing uncertain information [3].

1.2 Fractals

The word fractal was coined by Mandelbrot; fractus means broken, to describe the
objects that were too irregular to fit into a traditional geometrical setting [4, 5]. Many
fractals have characteristics of self-similarity that it made up parts to resemble the
whole in some way. The few examples of fractals are such as Cantor sets, Von Koch
curve, Menger sponge, dragon curve, Julia sets and Mandelbrot sets [6].

1.3 Sierpinski Triangle

In 1915, Waclaw Sierpinski described the triangle which is a self-similar structure,
and it occurs at different levels of iterations or magnifications; it is named as Sier-
pinski triangle. The Sierpinski triangle is a fractal, and it satisfies all the properties
of a fractal [4]. For the triangular area, with each iteration, the side of the inside
triangle reduces by a factor of 2. The numbers of these little triangles, on the other,
had increased not by 4 but by a factor of 3. The dimension of self-similar object is
then (log 3/log 2) = 1.58 approximately [7].

1.4 Dihedral Group

The dihedral groups play a significant role in the group theory, while the dihedral
groups are originally produced from the symmetries of regular polygons, which
together from surfaces and planes. A regular polygon which has rotations and reflec-
tions forms a dihedral group, and the dihedral group for n-polygon is denoted by
D2n. [8, 9].

Fuzzy triangular number as a tool for student assessment is explained in this paper
[10]. New operation on triangular fuzzy number for solving fuzzy linear program-
ming problem is discussed [3]. It explained about triangular approximation of fuzzy
numbers—a new approach [1], and they all discussed with randomly chosen trian-
gular fuzzynumbers. InSect. 2, operations of fuzzy triangular numberswith graphical
representation are discussed using Sierpinski triangle with side n = 1, k and k + 1
unit and also discussed dihedral group in fuzzy triangular number triangle.
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2 Operations on Fuzzy Triangular Numbers

2.1 Iteration of Equilateral Triangle

Figure 1 represents the iteration of the Sierpinski triangle from stage 0 to 3.

Fig. 1 Iteration of
Sierpinski triangle

 I0  I1

         I 2   I3

Fig. 2 (1 unit)
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Figures 2, 3 and 4 represent fuzzy triangular numbers obtained from an equilateral
triangle of side 1 unit, k unit and k + 1 unit, respectively.

Based on Fig. 1, the iteration of the Sierpinski triangle of side 1 unit, k units and
k + 1 unit is explained in Tables 1, 2 and 3, respectively.

Fig. 3 (k unit)

Fig. 4 (k + 1 unit)
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Table 1 Iteration of Sierpinski triangle of side 1 unit

Iteration number Scaling TFNs

I1
1
2 (0, 12 , 1)

I2
1
4 (0, 1

4 , 1
2 ), (

1
4 , 1

2 , 1), (0,
1
8 ,

1
4 ),

I3
1
8 …

In
( 1
2

)n
n–numbers

Table 2 Iteration of Sierpinski triangle of side K unit

Iteration number Scaling TFNs

I1
1
2 (0, K

2 , k)

I2
1
4 (0, k

4 , k
2 ), (

k
4 , k

2 , k), (0, k
8 ,

k
4 ),

I3
1
8 …

In
( 1
2

)n
n–numbers

Table 3 Iteration of Sierpinski triangle of side K + 1 unit

Iteration number Scaling TFNs

I1
1
2 (0, k+1

2 , k + 1)

I2
1
4 (0, k+1

4 , k+1
2 ), ( k+1

4 , k+1
2 , k + 1), (0, k+1

8 , k+1
4 ),.

I3
1
8 …

In
( 1
2

)n
n–numbers

2.2 FTN in α-cut Operations

By using the definition of [11], let a, b and c be real numbers with a < b < c. Then,
the TFN À = (a, b, c) is a fuzzy number with membership function

m(�) =

⎧
⎪⎨

⎪⎩

�−a
b−a , a ≤ � ≤ b
c−�
c−b , b ≤ � ≤ c
0, � < a, � > c

By using the definition of [10, 12], the α-cuts Àα of a TFN À = (a, b, c), α ∈ [0,
1], then

Àα = [
Àiα, Àrα] = [

(a + α(b − a)), (c − α (c − b))]

α-cut operation and from Fig. 3 and from Table 2, G (0, k/2, k)
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Gα = [a1α, a3 α] = (k α,−k

2
α + k) (1)

Operation by α-cut F (0, k
4 ,

k
2 )

Fα = [a1α, a3 α] = (
k

4
α, −k

4
α + k

2
) (2)

Approximation for multiplication from Eqs. (1) and (2)

Gα(·) Fα = [(k

2
α · k

4
α), (−k

2
α + k · −k

4
α + k

2
)] (3)

α = 0 = (0, k2/2)

α = 1 = (k2/8, k2/8)

Gα(·) Fα = (0, k2/2, k2/8)

From Fig. 4 and from Table 3 and based on definition TFN α-cut

A (0,
k + 1

2
, k + 1)

Aα = [a1α, a3α] = [{(k + 1) α, −k + 1

2
α + k + 1}] (4)

Operation by α-cut B (0, k+1
4 , k+1

2 )

Bα = [a1α, a3α] = [(k + 1

2
) α, (−k + 1

4
)α + k + 1

2
)] (5)

Approximation for multiplication from Eqs. (4) and (5)

Aα.Bα = [{(k + 1)α · (
k + 1

2
)α}, {(−k + 1

2
α + k + 1) · (−k + 1

4
α + k + 1

2
)}]

α = 0 = (0,
(k + 1)2

2
)

α = 1 = { (k + 1)2

2
,

(k + 1)2

8
}

Aα (.) Bα = [0, (k + 1)2

2
,

(k + 1)2

8
] (6)

Therefore multiplication of two TFN is Triangular Fuzzy Number but it is not
always. The lines connecting the end points are parabolic and triangular form in
actual product and standard approximation, respectively.
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2.3 Graphical Representation of Multiplication of FTN

Figures 5 and 6 represent a graphical representation of sidek units and k + 1 units,
respectively.

Consider two fuzzy numbers U = (0, k/2, k), Ũ = (0, k/4, k/2), and from Eqs. (1),
(2) and (3), multiplication of two fuzzy numbers [1] based on this lemma their
respective α-cut will be U(α) = k2α

8 , Ũ (α) = (k2 α2- 4k2α + 4k2) / 8,v(r) = k2

16 + k2r
16 ,

v *(r) = 5k2

16 − 3k2r
2 .

Consider two fuzzy numbers (0, k+1
2 , k + 1), (0, k+1

4 , k+1
2 ), and from the Eqs. (4),

(5) and (6) and the lemma [1], α-cut will be

U (α) = [ (k + 1)2α2]
8

, Ũ (α) = (k + 1)2α2]
8

− (k + 1)2α]
2

+ (k + 1)2]
2

,

ν(r) = (k + 1)2]
16

+ (k + 1)2r ]
4

, ν∗(r) = 5
(k + 1)2]

16
− 3

(k + 1)2r ]
8

Fig. 5 α-cut diagram for k

Fig. 6 α-cut diagram of k +
1
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2.4 Calculating Centroid and Median of FTN Triangle
of Side k, k + 1 Units

In Fig. 7, Let ABC is a Fuzzy triangle obtained from FTN of side k unit and G is the
centroid of the triangle ABC of side k units with the vertices A(0,0), B(k/2, 1), and
C(k, 0) and M(k/2, 0) is the midpoint of A and C, and N(3 k/4, 1/2) is the midpoint
of B and C. Based on the definition TFN and from Fig. 6, Equation of the straight
line A(0, 0) and N((3 k)/4, 1/2) on which AN lies in

2x − 3ky = 0 (7)

From Fig. 7, based on the definition TFN, Equation of B (k/2, 1) andM (k/2,0)lies
in

2x + 0y = k (8)

The linear system of Eqs. (7), and (8) has a consistent and has unique solution
determining the coordinates of the triangle COG in Fig. 7 and the centroid of the
triangle after observing the following

D =
∣∣∣∣
2 −3k
2 0

∣∣∣∣ = 0 + 6k = 6k (9)

Dx =
∣∣∣∣
0 −3k
K 0

∣∣∣∣ = 3k2 (10)

Dy =
∣∣∣∣
2 0
2 k

∣∣∣∣ = 2k (11)

Therefore, x = k/2, y = 1/3. Solving Eqs. (7) and (8), based on the definition
[10, 13].

Fig. 7 Fuzzy triangular
numbers triangle with
centroid and median
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Fig. 8 Fuzzy triangular
numbers triangle with
centroid and median

[x = (a + b + c)/3, y = 1/3]. The coordinates of centroid of the triangle G are
(k/2, 1/3) which is equal to x = (0+k+k/2)

3 , y = (1+0+0)
3 , i.e. (k/2, 1/3). Similarly, for

k + 1 units.
In Fig. 8, G represents the centroid of the fuzzy triangular numbers triangle of

side, k + 1units with the vertices A(0, 0), B(k + 1/2, 1), and C(k + 1,0) and M( k+1
2 ,

0) is the midpoint of A and C, and N((3k + 3)/4, 1/2) is the midpoint of B and C. x

= (0+ k+1
2 +(k+1))
3 , y = (1+0+0)

3 , i.e. ( k+1
2 , 1/3).

2.5 Dihedral Group in FTN

From Figs. 2, 3 and 4, the FTNs triangle obtained after the iteration it has six symme-
tries i.e. three rotations and three reflections; asymmetry can interchange some of
the sides and vertices. Figure 9 represents rotations and reflections of the triangle
which is obtained from the equilateral triangle after each iteration. (Assume that the
sides are 1, 2, 3, respectively) ®, represents reflections, rotations, respectively.

Each rotation has binary composite functions because every image has a unique

pre-image. This can be represented by matrix also

[
1 2 3
3 1 2

]
.

Table 4 clearly shows that it satisfies the group property of Closure: If ®1 and ®2

are in the group, then are also in the group. Associativity: If are
in the group, then ( ) Identity: There is an element of
the group such that , for all a belongs the group, here e =
®0.Inverse: For any element a of the group, there is an element a−1 such that

and , and every element has inverse but not a commutative because
(rotation and reflection will not commute in general); therefore,

it is a non-abelian group.
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Fig. 9 Rotations and reflections of FTNs triangle

Table 4 Cayley table of usual multiplication

3 Conclusion

Multiplication of fuzzy triangular numbers α-cuts is discussed in self-similarity of
Sierpinski triangle. This triangle satisfied fractal property. From this, it concludes that
fuzzy triangular numbers triangle satisfied FTN properties for all value of n where
n belongs to natural number, and multiplication of two fuzzy triangular numbers is
approximation of fuzzy triangular numbers. Median and centroid derived from the
triangle formed by fuzzy triangular numbers triangle are same as a normal triangle,
and it has six symmetries (rotations and reflections); therefore, it forms dihedral
group of non-abelian. This dihedral group plays an important role in group theory,
chemistry (the group is used in the classification of molecules and crystals) and
geometry.

This research article aims is that proposed and bridged some new ideas
in mathematics with fuzzy concept and also developing and strengthening the
number-theoretical aspects of fuzzy numbers in future.
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