Skip to main content
Log in

Influence of rice husk ash Si3N4 ceramic on mechanical, wear and low cycle fatigue behavior of hybrid pineapple/basalt fiber reinforced polyester composite

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive characterization of hybrid fiber and bioceramic reinforced polyester composites, focusing on their mechanical, fatigue, and flammability, creep, and water absorption properties. The investigation explores the influence of fiber stacking sequence and the integration of Si3N4 particles on the performance of the composites. Mechanical tests reveal significant enhancements in the tensile and flexural strength with variations in composition and stacking sequence. The alternating arrangement of basalt and pineapple fibers in the composites demonstrates synergistic reinforcement effects, while Si3N4 particle incorporation further improves mechanical properties. Fatigue testing highlights the role of Si3N4 particles in enhancing fatigue resistance, with composites exhibiting extended fatigue life. Creep behavior analysis indicates reduced creep strain with Si3N4 particle incorporation, emphasizing their role in enhancing creep resistance. Flammability testing underscores the influence of material composition on fire safety characteristics, with composites achieving varying self-extinguishing rates. Water absorption testing reveals increased water uptake in composites containing natural fibers, emphasizing the need for careful consideration of fiber composition in applications exposed to humid environments. SEM analysis provided insights into microstructural features and interfacial characteristics, revealing the presence of Si3N4 particles and fiber-related phenomena. Overall, this study provides valuable insights into the multifaceted performance of hybrid fiber and bioceramic reinforced polyester composites, offering implications for diverse engineering applications requiring elevated strength, durability, and fire safety in structural, defense, automotives, and drones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (India)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All data in manuscript.

References

  1. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: A comprehensive review. J Cleaner Product 172:566–581

    Article  Google Scholar 

  2. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Iulian Pruncu C, Khan A (2019) Carbohydrate Polymers 207:108–121

    Article  Google Scholar 

  3. Oleiwi JK, Hamad QA, Faheed NK (2023) Biotribology 35:100244. https://doi.org/10.1016/j.biotri.2023.100244

    Article  Google Scholar 

  4. Khare JM, Dahiya S, Gangil B, Ranakoti L (2021) Materials Today: Proceedings 38:345–349. https://doi.org/10.1016/j.matpr.2020.07.420

    Article  Google Scholar 

  5. Jesumanen J, Chandrasekaran M, Babu Aurtherson P (2023) Biomass Conversion and Biorefinery 1–9

  6. Kazi AM, Ramasastry DVA, Waddar S, Mane SG (2024) Transactions of the Indian Institute of Metals 1–7. https://doi.org/10.1007/s12666-023-03239-y

  7. Tezara C, Zalinawati M, Siregar JP, Jaafar J, Hamdan MHM, Oumer AN, Chuah KH (2021) International Journal of Precision Engineering and Manufacturing-Green Technology, 1–13. https://doi.org/10.1007/s40684-021-00311-0

  8. Asyraf MRM, Syamsir A, Supian ABM, Zaki MAFM, Hazrati KZ, Ashraf W, … Aksoylu C (2024) Fibers and Polymers 1–12. https://doi.org/10.1007/s12221-023-00465-5

  9. Alshahrani, Hassan, Arun Prakash VR (2024) Physiologia Plantarum 176(1):e14166

  10. Alshahrani, Hassan, Arun Prakash VR (2023) Polymer Composites

  11. Jeevanantham S, Kaliappan S, Natrayan L, Joshi S (2024) Biomass Conversion and Biorefinery 1–12. https://doi.org/10.1007/s13399-024-05385-9

  12. Mohan Das Gandhi AG, Sivaraman R, Nagabhooshanam N, Verma R (2023) Polymer Composites 44(9):5647–5655. https://doi.org/10.1002/pc.27516

  13. Prabhu P, Jayabalakrishnan D, Balaji V et al (2024) Biomass Conv Bioref 14:109–116. https://doi.org/10.1007/s13399-021-02177-3

    Article  Google Scholar 

  14. Prakash VRA, Bourchak M, Alshahrani H et al (2023). Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04736-2

    Article  Google Scholar 

  15. Raja T, Devarajan Y (2023) Biomass Conversion and Biorefinery 1–10

  16. Naveen J, Jawaid M, Zainudin ES, Sultan MTH, Yahaya R (2019) J Mater Res Technol 8:1308. https://doi.org/10.1016/j.jmrt.2018.07.023

    Article  Google Scholar 

  17. Bourchak M, Ajaj RM, Khalid M, Juhany K. J Vinyl Addit Technol. 2023;1. https://doi.org/10.1002/vnl.21990

  18. Prabhu P, Jayabalakrishnan D, Balaji V, Bhaskar K (2022). Bio- mass ConvBioref. https://doi.org/10.1007/s13399-021-02177-3

    Article  Google Scholar 

  19. Mohan Das Gandhi AG, Sivaraman R, Nagabhooshanam N, Verma R (2023) Polymer Composites 19. https://doi.org/10.1002/pc.27516

  20. Arun Prakash VR, Xavier JF, Ramesh G et al (2022) Biomass Conv Bioref 12:5451–5461. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  21. Murugan MA, Jayaseelan V, Jayabalakrishnan D et al (2020) Silicon 12:1847–1856. https://doi.org/10.1007/s12633-019-00297-0

    Article  Google Scholar 

  22. Arun Prakash VR, Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  Google Scholar 

  23. Xiang G, Yin D, Meng R, Lu S (2020) J Appl Polym Sci 137:48796. https://doi.org/10.1002/app.48796

    Article  Google Scholar 

  24. Suriani MJ, Radzi FSM, Ilyas RA, Petru M, Sapuan SM, Ruzaidi CM (2021) Polymers 13:1282. https://doi.org/10.3390/polym13081282

    Article  Google Scholar 

  25. Omanovic-Miklicanin E, Badnjevic A, Kazlagic A, Hajlovac M (2020) Nanocomposites: a brief review. Health Technol 10:51–59. https://doi.org/10.1007/s12553-019-00380-x

    Article  Google Scholar 

  26. Thiyagu TT, JV, SPK, P, G. et al. (2023) Biomass Conv Bioref 13, 11841–11851. https://doi.org/10.1007/s13399-021-01941-9

  27. Thiyagu TT, Gokilakrishnan G, Uvaraja VC et al (2022) Silicon 14:3795–3808. https://doi.org/10.1007/s12633-021-01577-4

    Article  Google Scholar 

  28. Ben Samuel J, Julyes Jaisingh S, Sivakumar K et al (2021) Silicon 13:1703–1712. https://doi.org/10.1007/s12633-020-00569-0

    Article  Google Scholar 

  29. Arun Prakash VR, Viswanathan R (2018) Polym Bull 75:4207–4225. https://doi.org/10.1007/s00289-017-2262-1

    Article  Google Scholar 

  30. Khan MKA, Faisal M, Arun Prakash VR (2024) Biomass Conv Bioref. https://doi.org/10.1007/s13399-024-05421-8

  31. Alshahrani H, Vincent Rethnam AP (2024) Fibers Polym. https://doi.org/10.1007/s12221-024-00475-x

  32. Vinod A, Sanjay MR (2020) Siengchin Suchart, and Parameswaranpillai Jyotishkumar. J Clean Prod 258:120978

    Article  Google Scholar 

  33. Rajeshkumar G, ArvindhSeshadri S, Devnani GL, Sanjay MR, Siengchin S, Prakash Maran J, Abdullah Al-Dhabi N et al (2021) J Cleaner Product 310:127483

    Article  Google Scholar 

  34. Sanjay MR, Arpitha GR, LaxmanaNaik L, Gopalakrishna K, Yogesha BJNR (2016) Nat Resour 7(3):108–114

    Google Scholar 

  35. Madhu P, Sanjay MR (2020) Mohammad Jawaid, Suchart Siengchin, Anish Khan, and Catalin Iulian Pruncu. Polym Testing 85:106437

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jesumanen J—full research work. Chandrasekaran M & P. Babu Aurtherson—guiding of research work.

Corresponding authors

Correspondence to J Jesumanen or M Chandrasekaran.

Ethics declarations

Ethical approval

NA.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesumanen, J., Chandrasekaran, M. & Aurtherson, P.B. Influence of rice husk ash Si3N4 ceramic on mechanical, wear and low cycle fatigue behavior of hybrid pineapple/basalt fiber reinforced polyester composite. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05685-0

Keywords