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Abstract: This study aims to enhance the mechanical and wear properties of hybrid nanocomposites
by incorporating SiC nanoparticles and glass fibers into an epoxy resin matrix, utilizing a neural
network for optimization. The mechanical properties were evaluated via flexural, impact, and wear
tests. SiC nanoparticle concentrations were varied at three levels using the Taguchi technique. The
results were optimized with the Taguchi signal-to-noise ratio approach. Regression analysis was
used to determine the wear rate, flexural strength, and impact properties of the composites. SiC
reinforcement significantly influenced the flexural and impact strength, along with wear resistance.
The composition with 2% SiC showed a flexural strength of 95 MPa, while 4% and 6% SiC compo-
sitions exhibited strengths of 110.5 MPa and 125 MPa, respectively. The impact strength followed
a similar trend. The wear test results demonstrated a decrease in the specific wear rate (Swr) and
coefficient of friction (CoF) with an increasing SiC nanoparticle percentage. The optimal parameters
were identified as 6% SiC nanoparticle loading, 15 N load, 160 RPM rotation speed, and a 40.2 mm
sliding distance. The enhancement in impact strength is attributed to SiC nanoparticle reinforcement.
The results were further refined using an artificial neural network for improved predictability. This
research underscores the effectiveness of hybrid nanocomposites with SiC nanoparticles and glass
fibers, as well as the potential of neural networks for process optimization, benefiting industries
requiring high-performance materials.

Keywords: nanoparticle; neural network; ANN; glass fiber

1. Introduction

In recent years, materials science has made substantial strides in advancing novel
composites with improved mechanical properties. Hybrid nanocomposites, which combine
the strengths of different materials, have garnered significant attention [1,2]. Notably, the
combination of silicon carbide (SiC) and glass fiber (GF) reinforcements has demonstrated
promising synergistic effects. The incorporation of SiC nanoparticles into composites has
been found to enhance wear resistance, hardness, and strength. For instance, epoxy-based
composites with varying SiC nanoparticle concentrations exhibit significant improvements
in wear resistance and hardness. Hybrid composites, mixing SiC nanoparticles with carbon
fibers, outperform pure epoxy resin. Glass fibers, known for their high strength, stiffness,
and chemical resistance, are an ideal choice for reinforcing polymers. Their inclusion
enhances material strength, and longer fibers with higher content significantly increase
flexural strength [3–5].

This review explores the optimization of composite materials through statistical tech-
niques, including the Taguchi method, regression analysis, and ANOVA. The Taguchi
method, a widely used experimental design approach, identifies optimal combinations of
parameters by varying input variables [6–8]. For example, it has been applied to optimize
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the wear resistance of carbon nanotube-reinforced epoxy composites. Regression analysis,
which studies relationships among variables, has been employed to create mathematical
models for predicting the mechanical properties of composites [9,10]. These models ac-
curately forecast the strength of glass fiber-reinforced polyester, for instance. ANOVA, a
statistical technique for analyzing data variance, is utilized to assess the impact of process
parameters on output variables [11,12]. It has been used to investigate the effects of process
parameters on the mechanical properties of composite materials, revealing, for example,
that molding pressure significantly influences these properties.

In conclusion, this review highlights previous research on hybrid nanocomposites that
combine SiC nanoparticles and glass fibers, resulting in significant property enhancements.
This research focuses on assessing the impact of varying SiC nanoparticle concentrations,
alongside glass fibers, on the wear and mechanical properties of hybrid nanocomposites. It
includes flexural and impact testing, wear rate analysis, optimization through the Taguchi
method, and the use of artificial neural networks for prediction and process optimization.

2. Methodology
2.1. Material Preparation

This study involved creating a hybrid nanocomposite by adding SiC nanoparticles to
epoxy resin, a process known to enhance mechanical properties. Preheating SiC nanoparti-
cles at 200 ◦C for 60 min improved dispersion in the epoxy by breaking down agglomerates
and increasing fluidity. This step also reduced epoxy viscosity at 50 ◦C, facilitating nanopar-
ticle interaction. Three SiC nanoparticle concentrations, 2%, 4%, and 6%, were introduced
into the epoxy using magnetic stirring for 30 min, ensuring even distribution. The hand
lay-up technique added glass fibers, allowing precise control over the composite’s prop-
erties. Afterward, composite specimens were air-dried for 24 h, which is essential for
curing the resin and solidifying it around the fibers. The curing conditions were optimized
to achieve the desired mechanical properties. The samples were then cut according to
ASTM standards, with Table 1 showing the effect of composite percentage on physical
and mechanical properties. The right balance of fiber and matrix content is essential for
achieving the desired characteristics.

Table 1. Prepared hybrid composite percentages.

S. No. Glass Fiber Material
Composition in %

Epoxy Material
Composition in %

Percentage of
Nanoparticles of SiC

1 40 58 2
2 40 56 4
3 40 54 6

2.2. Experimental Procedure

In this research, the hybrid nanocomposite’s characteristics were assessed using a
3-point flexural test, adhering to ASTM D790 standards for polymer and plastic materials.
The objective was to measure the composite’s flexural strength. Specimens, with dimensions
of 120 × 15 × 5 mm, were placed on a 3-point bending device with a span-to-width ratio of
16 (see Figure 1). The Instron-3382 machine conducted the test at a speed of 3.6 mm/min.
The load and corresponding displacement were recorded, and the load versus displacement
plot was used to calculate the composite’s strength using the formula:

Flexural strength = (3 × Load × L)/(2 × b × d2)

where L is the span, b is the sample’s width, d is the thickness, and Load is the maximum
load the specimen endured.
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Figure 1. Illustration of flexural test setup.

This study also evaluated the impact resistance of the prepared nanocomposite mate-
rials using the Izod testing machine, following ASTM D256 standards. This test measures
the energy required to break a sample with a swinging pendulum. Rectangular samples
with dimensions of 63.5 mm × 13.5 mm × 4.5 mm were clamped vertically in the testing
machine. An impact load was applied at the sample’s center using a swinging pendulum
with a known weight and velocity. The energy needed to break the specimen was measured,
and the impact strength was calculated by dividing the energy by the specimen’s cross-
sectional area. This test assessed the composite materials’ impact resistance, especially for
applications where withstanding impact loading is critical.

In this study, the wear behavior of the hybrid nanocomposites, reinforced with SiC
nanoparticles and glass fibers, was assessed using a wear apparatus. The evaluation
followed ASTM G99 standards. A cylindrical pin, measuring 10 mm in diameter and
50 mm in length, was crafted from the hybrid nanocomposite material. The base disc
was composed of En 31 material. Experimentation was carried out using a Taguchi L27
array design.

In this study, two key output responses were Swr (specific wear rate) and CoF (co-
efficient of friction). Swr quantifies the material loss per unit sliding distance and is
calculated as:

Swr = (∆w/L) × (1/Ds)

Here, ∆w is the mass loss after testing, L is the applied load, and Ds is the sliding
distance. CoF measures the ratio of tangent force (Ft) to normal force (Fn) on the specimen:

Cf = Ft/Fn

The experiments involved varying the input responses—load (L), rotation speed (Sr),
sliding distance (Ds), and composition (C)—across three levels.

3. Results and Discussion
3.1. Flexural Strength

This study assessed the flexural strength of the alloy by employing the three-point
bend test, according to ASTM D790 standards, using a continuous crosshead speed of
3.6 mm/min. The corresponding displacement data were recorded to determine flexural
strength. Table 2 summarizes the test outcomes, demonstrating an increase in flexural
strength as the SiC nanoparticle content rises. The composition with 2% SiC exhibits a
flexural strength of 95 MPa, while the 4% and 6% SiC compositions reach strengths of
110.5 MPa and 125 MPa, respectively. This strength enhancement is attributed to SiC
nanoparticles reinforcing the epoxy matrix, thereby increasing stiffness and durability.
The inclusion of glass fibers further contributes to improved flexural strength, acting as
load-bearing elements.
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Table 2. Flexural property of the alloy.

S. No. Composite Flexural Strength (Mpa)

1 Glass fiber epoxy with 2% SiC 95
2 Glass fiber epoxy with 4% SiC 110.5
3 Glass fiber epoxy with 6% SiC 125

3.2. Impact Test

In this study, we assessed impact resistance by conducting Izod impact tests, according
to ASTM D256 standards. Test specimens were prepared with notches to create stress con-
centration points and then subjected to pendulum impacts. Impact strength was quantified
as energy absorption per unit specimen width. The results indicated that the inclusion
of SiC nanoparticles in the glass epoxy composite enhanced impact strength. Specifically,
composites with 2%, 4%, and 6% SiC additives exhibited impact strengths of 524.23 J/m,
531.1 J/m, and 543.3 J/m, respectively (Figure 2). The SiC nanoparticles acted as reinforcing
agents, improving strength and stiffness. Additionally, the introduction of stiff glass fibers
further bolstered impact resistance, showcasing a synergistic strengthening effect.
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Figure 2. Impact result obtained from the experiment.

3.3. Wear Test

In the wear test, we utilized an L27 Taguchi design to investigate the impact of input
parameters on the Swr and CoF in the composite. Table 3 displays these input parameters
and the wear test results. The base disc material employed in this research is En 31, with a
fixed 10 mm diameter and a 50 mm length pin attached to the testing machine.

After conducting the wear test and analyzing the results, the optimal combination of
input parameters for minimizing the responses was determined using the S/N analysis
method. The S/N ratio was computed by taking the logarithm of the reciprocal of the
squared deviations from the target values, with the lowest value serving as the target for
the Swr and the highest value serving as the target for the CoF. Figure 3 illustrates the
optimal combination of input parameters, including 6% SiC nanoparticle loading, 15 N of
load, 160 RPM of rotation speed, and 40.2 mm of sliding distance, selected based on the
desirability function, which measures the proximity of the response to the target value. The
wear test outcomes indicated that both the Swr and CoF decreased as the percentage of SiC
nanoparticle loading increased. The optimal combination of input parameters was found
to be 6% SiC nanoparticle loading, 15 N of load, 160 RPM of rotation speed, and 40.2 mm
of sliding distance, resulting in the lowest Swr and CoF. This S/N ratio analysis approach
effectively determined the optimal combination of input parameters to minimize wear in
the composite material.



Eng. Proc. 2024, 61, 46 5 of 8

Table 3. Results from the wear test.

C (%) Load (N) Sr Ds Swr (mm3/Nm) CoF

2 15 120 35.4 1.85 0.29
2 15 120 35.4 1.85 0.29
2 15 120 35.4 1.85 0.29
2 20 140 37.8 0.61 0.34
2 20 140 37.8 0.61 0.34
2 20 140 37.8 0.61 0.34
2 25 160 40.2 0.1 0.36
2 25 160 40.2 0.1 0.36
2 25 160 40.2 0.1 0.36
4 15 140 40.2 0.33 0.3
4 15 140 40.2 0.31 0.29
4 15 140 40.2 0.32 0.29
4 20 160 35.4 0.98 0.14
4 20 160 35.4 0.98 0.34
4 20 160 35.4 0.97 0.34
4 25 120 37.8 1.72 0.09
4 25 120 37.8 1.74 0.71
4 25 120 37.8 1.73 0.23
6 15 160 37.8 0.11 0.09
6 15 160 37.8 0.15 0.11
6 15 160 37.8 0.13 0.09
6 20 120 40.2 0.12 0.14
6 20 120 40.2 0.14 0.14
6 20 120 40.2 0.15 0.13
6 25 140 35.4 0.32 0.15
6 25 140 35.4 0.33 0.19
6 25 140 35.4 0.35 0.21
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Linear regression analysis was conducted with MINITAB software to create predic-
tive mathematical equations for both the CoF and Swr. Equation (1) represents the CoF
equation, and Equation (2) represents the Swr equation. These equations serve as valuable
tools for accurate response prediction, reducing the need for additional experiments and
saving both time and costs. Furthermore, these equations establish a quantitative relation-
ship between input parameters and responses, facilitating the optimization of composite
material properties.

Cof = 0.244 − 0.0478 C + 0.00689 L − 0.00033 Sr + 0.0030 Ds (1)

Swr (mm3/Nm) = 11.19 − 0.1633 C − 0.0046 L − 0.02092 Sr − 0.1808 Ds (2)
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Table 4 summarizes the experimental results obtained from the optimal input parame-
ter combination for the wear test and includes the predicted equations for the Swr and CoF.
It allows for a comparison between the actual experimental values and those predicted
through the developed equations.

Table 4. Predicted and experimental results of the optimal combination.

Optimal Combination
Experimented Predicted

Swr
(mm3/Nm) CoF Swr

(mm3/Nm) CoF

6% of C 15 N of L, 160 RPM
of Sr, and 40.2 mm of Ds 0.1 0.12 0.13 0.14

The outcomes of the wear test are further analyzed in Design Expert to investigate the
effects of the composition of SiC, load, speed of rotation, and sliding distance on both the
Swr and CoF. Figure 4a shows the contour plot of the Swr, indicating that an increase in the
percentage of SiC nanoparticles, coupled with a decrease in the load, speed of rotation, and
sliding distance, results in a decrease in the Swr. Similarly, Figure 4b shows the contour plot
of the CoF, indicating that an increase in the composition of SiC nanoparticles, coupled with
a decrease in the load, speed of rotation, and sliding distance, results in a decrease in the
CoF. The results suggest that increasing the composition of SiC nanoparticles and reducing
the load, speed of rotation, and sliding distance can significantly reduce the Swr and CoF
of the composite material. This can be advantageous in applications where the material is
subjected to wear and friction, such as in bearings, gears, and other mechanical components.
The insights gained from this analysis can be used to optimize the manufacturing process
and improve the performance of the material in real-world applications.
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The SEM analysis in Figure 5 illustrates the wear mechanism on the sample surfaces
under optimal conditions. SiC nanoparticles and glass fibers are embedded within the
composite material matrix. SEM images show that the wear rate is lowest at a 6% SiC com-
position compared to 2% and 4%, indicating SiC’s reinforcing effect. SiC nanoparticle size
and distribution vary with the composition percentage. A better bond between fiber and
resin is observed in SEM analysis, correlating with reduced wear as SiC composition increases.

Artificial neural network (ANN) is a machine-learning technique inspired by brain
function, used to predict complex non-linear functions in diverse fields. In this study,
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an ANN model was developed to predict the Swr and CoF based on inputs: load (L),
rotation speed (Sr), sliding distance (Ds), and SiC composition. The process included
network architecture selection, training using the back-propagation algorithm, testing with
separate data, and validation with new data. The ANN model proved highly accurate in
predicting responses of 99.12%, as depicted in Figure 6. This model eliminates the need for
experimental predictions, allowing for optimized wear characteristics by selecting optimal
input parameters.
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4. Conclusions

• This study yielded significant findings on the mechanical and wear properties of
hybrid nanocomposites.

• The flexural strength improved as SiC loading increased, with a 6% SiC composition
showing the highest strength.
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• The impact strength increased with increasing SiC concentration, reaching its highest
point at 6% SiC, attributed to the reinforcement effect of SiC nanoparticles.

• The wear test revealed reduced wear rates with higher SiC loading, enhancing wear
resistance.

• The optimal parameters for minimal wear rate and friction were found to be 6% SiC
loading, 15 N load, 160 RPM rotation speed, and 40.2 mm sliding distance.

• Artificial neural networks enhanced response prediction accuracy at a percentage of
99.12%. This study highlights the effectiveness of SiC and glass fiber hybrid nanocom-
posites in enhancing properties and optimizing manufacturing processes, with broad
applicability in high-performance materials.
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