
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 6S4, April 2019

1090

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: F12260486S419/19©BEIESP

DOI: 10.35940/ijitee.F1226.0486S419

Abstract--- In emerging IT industry, development of product

involves quality validation by testing the product, each fault

(known as defect) undergoes various stages until it gets closed in

the system. In the paper we discuss the life cycle of the defect to

understand the various stages of the defect. Using Machine

learning techniques, we could predict whether the defect will be

back to submitter for clarification as need information state or

the issue is fixed. In this paper we will discuss the machine

learning techniques for predicting the defect back to tester for

need information state and the method of accuracy in prediction.

Keywords--- Machine Learning, Prediction, Defect,

Maintenance, Performance.

1. INTRODUCTION

Defect in the Product

When a software product is maintained, and the

development product is validated for passing the quality

control, the issues identified are called as defect in the

software product. Development team develops the code and

testers tests the software for fault. Tester identifies the fault

and convey the fault to developer through defect

management systems (for e.g., Bugzilla). Each defect will

go through a life cycle and it is discussed in next section.

Life cycle of a Defect

Defects are the software faults which are found during the

maintenance and developments of software. Testing team

and field deployment

As part of the maintenance support, for each assigned

defect the following steps will be followed.

 Analysis of the defect description

 Check whether Not an issue or any

clarification required, if yes discuss with

testing team

 If the issue is not reproducible, check with

testing team

 Implementation of code changes to fix the

issue

 Submit the code for review

 Checkin in the code and update the defect

tracking system as Fixed

 Testing team verifies the fix and close the

defect

Revised Version Manuscript Received on April 12, 2019.

Manikandan Ramanathan*, Reserach Scholar, Department of

Computer Science & Engineering, Vels Institute of Science Technology &

Advanced Studies (VISTAS). Chennai, T.N, India (e-mail:

maniramphd@gmail.com)

Kumar Narayanan, Associate Professor, Department of Computer

Science & Engineering, Vels Institute of Science Technology & Advanced

Studies (VISTAS). Chennai, T.N, India

Defect Analysis

a) Understanding the issue

b) Analyzing the logs

c) Reproduce the issue and Analyze the erroneous

scenario

Need Information from Tester

a) Check and discuss with submitter if this is not an

issue or not a defect

b) Check with the submitter for further details, if

the problem not reproduced

c) If the issue is not an issue, tester closes the

defect in defect tracking system, otherwise

provides clarification

Fixing the Defect

a) Root cause the defect

b) Implement the code for fixing the issue

c) Complete the unit testing to verify that the issue

is fixed

d) Send the code for review

Figure 1: Defect Life Cycle

Prediction of Defects Returning Back to Test

Engineers in Data Center Stability Testing

using Machine Learning Techniques
Manikandan Ramanathan, Kumar Narayanan 

mailto:maniramphd@gmail.com

PREDICTION OF DEFECTS RETURNING BACK TO TEST ENGINEERS IN DATA CENTER STABILITY

TESTING USING MACHINE LEARNING TECHNIQUES

1091

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: F12260486S419/19©BEIESP

DOI: 10.35940/ijitee.F1226.0486S419

a) Checkin the code

b) Update the defect as fixed in defect tracking

system

c) Tester verifies the fix and updates the defect as

verified and closed

2. MODEL FOR PREDICTION

Following are the steps for creating the model,

1. Identify and create a defect in defect tracking

system

2. Build a machine learning model

a. Learning

b. Training

c. Classification

3. Predict whether the issue goes back to submitter of

the defect for more clarification

Figure 2: Prediction Model

3. DATA SET

Training Data - Summary

Data dump of two years defect records are taken as

training input. The dump had all the parameters identified

above.

 Total number of defects taken for training –

1,98,000

 CRs with more information state back – 20%

 Categories of defects – 2500

 Number of Engineers who created the defects –

2985 Submitters

 Development owners who are assigned for further

investigation – 3815 Development Engineers

 Severities – Urgent, High, Medium, Low

 Priorities – Mentioned in alert fields

Parameters identified for Learning

Following are the parameters identified from the defects

logged in defect tracking system,

• Defect ID – Identifier of the defect

• Title of the defect – Description of title in single line

• Reported build version – Build version where the

defect is raised

• Test Owner - Submitter - Name of the Engineer who

identified the defect

• Platform – When more than one platform is

available, it says the specific platform

• Severity – Urgent, High, Medium, Low

• Module Name – Specify which module the defect is

identified

• Blocker Alerts – Whether the defect is a must fix or

live with the known limitations

• Planned Release – Release in which fix of the defect

is expected

• State - State of the Defect – Open, In Progress,

Fixed, Not A Defect, Need Information, Closed

• Development owner – Engineer who must fix the

issue in software

• Defect Creation Date – Date on which the defect is

created in the defect tracking system

4. MACHINE LEARNING ALGORITHM USED &

RESULTS

Machine Learning algorithms are majorly classified in

two divisions and they are supervised and unsupervised

machine learning.

Supervised machine learning algorithm is training the

data by mapping it with a label. When the output is discrete,

the process of mapping a label to the featured data is called

as classification. When the output is continuous for the

featured input value, this method is called as regression.

Few examples of supervised machine learning algorithms

are Support vector machine, Linear regression algorithm,

decision tree algorithm, Neural networks, etc

UnSupervised machine learning algorithm is training the

data by investigating the data and group them in to a same

pattern or a group. This process of grouping the data is

called as clustering of data. Few examples of unsupervised

machine learning algorithms are KNN clusters, Naïve

Bayes, k- means clustering, Hierarchical clustering, Hidden

Markov Modelsetc

Supervised Learning Method

Regression Algorithm

Modelling the target value based on the independent

variables is called as regression. This method is used to find

the relationship between cause and effect of independent

variables.

The algorithm that predicts the independent variable value

(y) based on the available independent variable (x).

Data Mining

https://dataaspirant.com/2016/12/23/k-nearest-neighbor-classifier-intro/
https://dataaspirant.com/2016/12/23/k-nearest-neighbor-classifier-intro/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 6S4, April 2019

1092

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: F12260486S419/19©BEIESP

DOI: 10.35940/ijitee.F1226.0486S419

Confusion Matrix

Confusion matrix is a matrix which is used to visualise

the performance of an algorithm. Each row of

the matrix represents the instances of a predicted class and

each column represents the instances in the actual class.

True Positive

(Actual Hit)

94%

False Positive

(Actual Miss)

0%

False Negative

(False Alarm)

2%

True Negative

(Correct Rejection)

4%

Performance Measures

Performance measures are used to measure the accuracy

of the prediction model. Some of the classification

evaluation measures are:

 Recall

 Precision

 F-measure

 ROC

 Mean absolute error(MAE)

 Root mean square error(RMSE)

 Relative absolute error and accuracy(RAE)

Advantages and Future Use

Following are the advantages of this model,

 Reduced Testing effort

 Improvement in Bug fixing cycle

 Efficient defect management and improved

turnaround time from testers

In Future, we can trigger mail to tester when the

prediction model identifies the defect will come back to

them for further clarification on the setup or steps to

reproduce the issue. Suggestion on the reason can be based

on the training data of the data dump of history. It also

reduces the TAT (Turnaround time) from both tester and

developer. This model can be further evolved to root cause

the defects that are closed for not fixed defects.

5. CONCLUSION

The data center with increase in storage of big data will

be tested in house and trial runs executed for stability and

the defects raised should be valid and the invalid defects

consumes effort which can be reduced with the defect

prediction models discussed in this paper. Machine learning

algorithms are studied, and performance was measured and

documented the results in this paper.

REFERENCES

1. Hammouri, Awni& Hammad, Mustafa &Alnabhan,
Mohammad &Alsarayrah, Fatima. (2018). Software Bug
Prediction using Machine Learning Approach.
International Journal of Advanced Computer Science and
Applications. 9. 10.14569/IJACSA.2018.090212.

2. Sathish, A Parthiban, R Balakrishna, RAnandan.

"Development of ANN models for optimization of
methane yield from floatingdome digester", International
Journal ofEngineering & Technology, 2018

3. D. Sharma and P. Chandra, "Software Fault Prediction
Using Machine-Learning Techniques," Smart Computing
and Informatics. Springer, Singapore, 2018. 541-549.

4. S. Goel, K. Dewan, "Comprehensive Review on Fault
Prediction in Software Modules by Machine Learning
Approaches", International Journal of Advanced
Research in Computer Science and Software
Engineering, vol. 5, pp. 1686-1691, 2015.

5. A. Chug, S. Dhall, "Software defect prediction using
supervised learning algorithm and unsupervised learning
algorithm", Confluence 2013: The Next Generation
Information Technology Summit (4th International
Conference), pp. 173-179, 2013.

6. R. Malhotra, "A systematic review of machine learning
techniques for software fault prediction" in Applied Soft
Computing, B. V. Amsterdam:Elsevier Science

Publishers, pp. 504-518, 2015.
7. K. Wu, J. Xiao, and L. Ni, “Rethinking the architecture

design of data center networks,” Frontiers of Computer
Science, vol. 6, pp. 596–603, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s11704-012-1155-6

8. A.G. Koru and J. Tian, _An Empirical Comparison and
Characterization of High Defect and High Complexity
Modules,_ J. Systems and Software, vol.67, no. 3, 2003,

pp. 153_163.
9. Ian H. Witten and Eibe Frank, “Data Mining: Practical

Machine Learning Tools and Techniques” Second
Edition ISBN: 0-12-088407-0 © 2005 by Elsevier Inc.
Pages 36-44, 398- 400.

10. C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle:
a scalable ethernet architecture for large enterprises,” in
ACM SIGCOMM Computer

11. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C.
Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“Vl2: a scalable and flexible data center network,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp.
51–62, 2009

12. https://www.datacenterknowledge.com/machine-
learning/five-ways-machine-learning-will-transform-
data-center-management

13. https://developers.google.com/machine-learning/crash-

course/classification/true-false-positive-negative

https://en.wikipedia.org/wiki/Matrix_(mathematics)
http://dx.doi.org/10.1007/s11704-012-1155-6
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative

